【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

(1) 求實(shí)數(shù)的值;

(2) 判斷并用定義證明該函數(shù)在定義域上的單調(diào)性;

(3) 若方程內(nèi)有解,求實(shí)數(shù)的取值范圍.

【答案】(1)1;(2)見(jiàn)解析;(3)[-1,3).

【解析】

(1)根據(jù)解得,再利用奇偶性的定義驗(yàn)證,即可求得實(shí)數(shù)的值;(2)先對(duì)分離常數(shù)判斷出為遞減函數(shù),再利用單調(diào)性的定義作差證明即可;(3)先用函數(shù)的奇函數(shù)性質(zhì),再用減函數(shù)性質(zhì)變形,然后分離參數(shù)可得,內(nèi)有解,令只要.

(1)依題意得,,故,此時(shí),

對(duì)任意均有,

所以是奇函數(shù),所以.

(2)上是減函數(shù),證明如下:任取,則

所以該函數(shù)在定義域上是減函數(shù).

(3)由函數(shù)為奇函數(shù)知,

,

又函數(shù)是單調(diào)遞減函數(shù),從而,

即方程內(nèi)有解,

,只要

, 且,∴

∴當(dāng)時(shí),原方程在內(nèi)有解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義區(qū)間的長(zhǎng)度均為,多個(gè)互無(wú)交集的區(qū)間的并集長(zhǎng)度為各區(qū)間長(zhǎng)度之和,例如的長(zhǎng)度。用表示不超過(guò)的最大整數(shù),例如。記。設(shè),若用、分別表示不等式、方程和不等式解集區(qū)間的長(zhǎng)度,則當(dāng)時(shí),____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓E: + =1(a>b>0)的焦點(diǎn)到直線x﹣3y=0的距離為 ,離心率為 ,拋物線G:y2=2px(p>0)的焦點(diǎn)與橢圓E的焦點(diǎn)重合;斜率為k的直線l過(guò)G的焦點(diǎn)與E交于A,B,與G交于C,D.
(1)求橢圓E及拋物線G的方程;
(2)是否存在學(xué)常數(shù)λ,使 為常數(shù),若存在,求λ的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校進(jìn)行社會(huì)實(shí)踐,對(duì)歲的人群隨機(jī)抽取 1000 人進(jìn)行了一次是否開(kāi)通“微博”的調(diào)查,開(kāi)通“微博”的為“時(shí)尚族”,否則稱為“非時(shí)尚族”.通過(guò)調(diào)查得到到各年齡段人數(shù)的頻率分布直方圖如圖所示,其中在歲, 歲年齡段人數(shù)中,“時(shí)尚族”人數(shù)分別占本組人數(shù)的、.

(1)求歲與歲年齡段“時(shí)尚族”的人數(shù);

(2)從歲和歲年齡段的“時(shí)尚族”中,采用分層抽樣法抽取6人參加網(wǎng)絡(luò)時(shí)尚達(dá)人大賽,其中兩人作為領(lǐng)隊(duì).求領(lǐng)隊(duì)的兩人年齡都在歲內(nèi)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)O是坐標(biāo)原點(diǎn),橢圓C:x2+3y2=6的左右焦點(diǎn)分別為F1 , F2 , 且P,Q是橢圓C上不同的兩點(diǎn),
(1)若直線PQ過(guò)橢圓C的右焦點(diǎn)F2 , 且傾斜角為30°,求證:|F1P|、|PQ|、|QF1|成等差數(shù)列;
(2)若P,Q兩點(diǎn)使得直線OP,PQ,QO的斜率均存在.且成等比數(shù)列.求直線PQ的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的左、右焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為,若, 軸垂直,且.

(1)求橢圓方程;

(2)過(guò)點(diǎn)且不垂直于坐標(biāo)軸的直線與橢圓交于兩點(diǎn),已知點(diǎn),當(dāng)時(shí),求滿足的直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究鐘表與三角函數(shù)的關(guān)系,以9點(diǎn)與3點(diǎn)所在直線為x軸,以6點(diǎn)與12點(diǎn)為y軸,設(shè)秒針針尖指向位置P(x,y),若初始位置為P0 , ),秒針從P0(注此時(shí)t=0)開(kāi)始沿順時(shí)針?lè)较蜃邉?dòng),則點(diǎn)P的縱坐標(biāo)y與時(shí)間t(秒)的函數(shù)關(guān)系為(
A.y=sin( t+
B.y=sin( t﹣
C.y=sin(﹣ t+
D.y=sin(﹣ t﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD邊長(zhǎng)為2,以D為圓心、DA為半徑的圓弧與以BC為直徑的半圓O交于點(diǎn)F,連結(jié)CF并延長(zhǎng)交AB于點(diǎn)E.

(1)求證:AE=EB;
(2)求EFFC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)及圓.

1)若直線過(guò)點(diǎn)且被圓截得的線段長(zhǎng)為,的方程;

(2)求過(guò)點(diǎn)的圓的弦的中點(diǎn)的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案