函數(shù)y=
3
sinx+cosx的一個(gè)單調(diào)遞減區(qū)間是(  )
A、[-
π
2
,
π
2
]
B、[-π,0]
C、[-
3
3
]
D、[
π
3
,
3
]
考點(diǎn):兩角和與差的余弦函數(shù)
專題:三角函數(shù)的圖像與性質(zhì)
分析:化簡可得y=2sin(x+
π
6
),可得單調(diào)遞減區(qū)間為:[2kπ+
π
3
,2kπ+
3
],k∈Z,結(jié)合選項(xiàng)給k取特值可得.
解答: 解:化簡可得y=
3
sinx+cosx=2sin(x+
π
6
),
由2kπ+
π
2
≤x+
π
6
≤2kπ+
2
可得2kπ+
π
3
≤x≤2kπ+
3
,k∈Z,
∴函數(shù)y=
3
sinx+cosx的單調(diào)遞減區(qū)間為:[2kπ+
π
3
,2kπ+
3
],k∈Z,
當(dāng)k=0時(shí),可得一個(gè)單調(diào)遞減區(qū)間為[
π
3
,
3
],
故選:D
點(diǎn)評(píng):本題考查兩角和與差的三角函數(shù),涉及三角函數(shù)的單調(diào)性,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)A(1,2)作圓x2+y2+2x-4y-164=0的弦,其中弦長為整數(shù)的共有
 
條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)y=f(x)是奇函數(shù),則y=f(x)+1( 。
A、是奇函數(shù)
B、是偶函數(shù)
C、既是奇函數(shù)又是偶函數(shù)
D、是非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是等差數(shù)列,若2a7-a5=3,則a9的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:實(shí)數(shù)x滿足x2-4ax+3a2<0(其中a>0),命題q:實(shí)數(shù)x滿足
|x-1|≤2
x+3
x-2
>0

(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高校在2013年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組:第1組[160,165),第2組[165,170),第3組[170,175),第4組[175,180),第5組[180,185),得到的頻率分布直方圖如圖所示.
(1)分別求第3、4、5組的頻率;
(2)為了能選拔出最優(yōu)秀的學(xué)生,該校決定在筆試成績高的第3、4、5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,問每一組分別抽幾個(gè)人.
(3)在這6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至少有一名學(xué)生被甲考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖的程序框圖,輸出的S的值為( 。
A、0
B、-1
C、1
D、-
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD的底面是正方形,側(cè)棱PC⊥底面ABCD,E是側(cè)棱PC上的動(dòng)點(diǎn),F(xiàn)是棱AB的中點(diǎn).
(1)無論點(diǎn)E在任何位置時(shí),是否都有BD⊥AE?并證明你的結(jié)論;
(2)當(dāng)E為棱PC中點(diǎn)時(shí),求證:EF∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有關(guān)下列命題,期中說法正確的是(  )
A、若P∧q是假命題,則p,q都是假命題
B、一元二次方程x2-4x+n=0(n∈N*
C、命題若x2-2x+3=0,則x=3的逆否命題為“若x≠3,則x2-2x-3≠0”
D、“x2-3x-4=0”是“x=4”的充分不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案