【題目】若將函數(shù)y=cos 2x的圖象向左平移 個單位長度,則平移后圖象的對稱軸為( )
A.x= ﹣ (k∈Z)
B.x= + (k∈Z)
C.x= ﹣ (k∈Z)
D.x= + (k∈Z)
【答案】C
【解析】解:由題意,將函數(shù)y=cos 2x的圖象向左平移 個單位得y=cos 2(x+ )=cos(2x+ )的圖象, 令2x+ =kπ,
求得x= ﹣ ,故平移后函數(shù)的對稱軸為 x= ﹣ ,k∈Z,
故選:C.
【考點精析】掌握函數(shù)y=Asin(ωx+φ)的圖象變換是解答本題的根本,需要知道圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=a,an+1= (n∈N*).
(1)求a2 , a3 , a4;
(2)猜測數(shù)列{an}的通項公式,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的單調(diào)函數(shù)f(x)滿足:f(x+y)=f(x)+f(y),若F(x)=f(asinx)+f(sinx+cos2x﹣3)在(0,π)上有零點,則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= cos(2x﹣ ).
(1)若sinθ=﹣ ,θ∈( ,2π),求f(θ+ )的值;
(2)若x∈[ , ],求函數(shù)f(x)的單調(diào)減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)列, , , ,若滿足,則稱數(shù)列為“數(shù)列”.
若存在一個正整數(shù),若數(shù)列中存在連續(xù)的項和該數(shù)列中另一個連續(xù)的項恰好按次序?qū)?yīng)相等,則稱數(shù)列是“階可重復(fù)數(shù)列”,
例如數(shù)列因為, , , 與, , , 按次序?qū)?yīng)相等,所以數(shù)列是“階可重復(fù)數(shù)列”.
(I)分別判斷下列數(shù)列, , , , , , , , , .是否是“階可重復(fù)數(shù)列”?如果是,請寫出重復(fù)的這項;
(II)若項數(shù)為的數(shù)列一定是 “階可重復(fù)數(shù)列”,則的最小值是多少?說明理由;
(III)假設(shè)數(shù)列不是“階可重復(fù)數(shù)列”,若在其最后一項后再添加一項或,均可 使新數(shù)列是“階可重復(fù)數(shù)列”,且,求數(shù)列的最后一項的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知對任意平面向量 =(x,y),把 繞其起點沿逆時針方向旋轉(zhuǎn)θ角得到的向量 =(xcosθ﹣ysinθ,xsinθ+ycosθ),叫做把點B繞點A逆時針方向旋轉(zhuǎn)θ得到點P.
(1)已知平面內(nèi)點A(2,3),點B(2+2 ,1).把點B繞點A逆時針方向旋轉(zhuǎn) 角得到點P,求點P的坐標(biāo).
(2)設(shè)平面內(nèi)曲線C上的每一點繞坐標(biāo)原點沿順時針方向旋轉(zhuǎn) 后得到的點的軌跡方程是曲線y= ,求原來曲線C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)z1=2x+1+(x2﹣3x+2)i,z2=x2﹣2+(x2+x﹣6)i(x∈R).
(1)若z1是純虛數(shù),求實數(shù)x的取值范圍;
(2)若z1>z2 , 求實數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求證:1是函數(shù)的極值點;
(Ⅱ)設(shè)是函數(shù)的導(dǎo)函數(shù),求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com