拋物線M: 的準(zhǔn)線過橢圓N: 的左焦點,以坐標(biāo)原點為圓心,以t(t>0)為半徑的圓分別與拋物線M在第一象限的部分以及y軸的正半軸相交于點A與點B,直線AB與x軸相交于點C.
(1)求拋物線M的方程.
(2)設(shè)點A的橫坐標(biāo)為x1,點C的橫坐標(biāo)為x2,曲線M上點D的橫坐標(biāo)為x1+2,求直線CD的斜率.
(1) (2)-1
解析試題分析:(1)由拋物線的準(zhǔn)線方程,求出p即可;
(2)由直線BC方程求出x1和x2之間的關(guān)系式,然后用x1和x2表示出D點的坐標(biāo),
即可求出直線CD的斜率.
試題解析:(1)因為橢圓N:的左焦點為(,0),
所以,解得p=1,所以拋物線M的方程為.
(2)由題意知 A(),因為,所以.由于t>0,所以t= ①
由點B(0,t),C( )的坐標(biāo)知,直線BC的方程為,
由因為A在直線BC上,故有,將①代入上式,得,解得,又因為D( ),所以直線CD的斜率為
kCD====-1.
考點:1.拋物線的方程和性質(zhì);2.方程和斜率.3.橢圓方程的性質(zhì).
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓直線與圓相切,且交橢圓于兩點,是橢圓的半焦距,,
(Ⅰ)求的值;
(Ⅱ)O為坐標(biāo)原點,若求橢圓的方程;
(Ⅲ) 在(Ⅱ)的條件下,設(shè)橢圓的左右頂點分別為A,B,動點,直線AS,BS與直線分別交于M,N兩點,求線段MN的長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,直線與以原點為圓心、橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)如圖,、、是橢圓的頂點,是橢圓上除頂點外的任意點,直線交軸于點,直線交于點,設(shè)的斜率為,的斜率為,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:,
(1)若橢圓的長軸長為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(為坐標(biāo)原點),求直線的斜率的取值范圍;
(3)過原點任意作兩條互相垂直的直線與橢圓:相交于四點,設(shè)原點到四邊形的一邊距離為,試求時滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線焦點為,直線經(jīng)過點且與拋物線相交于,兩點
(Ⅰ)若線段的中點在直線上,求直線的方程;
(Ⅱ)若線段,求直線的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是橢圓的右焦點,圓與軸交于兩點,是橢圓與圓的一個交點,且
(Ⅰ)求橢圓的離心率;
(Ⅱ)過點與圓相切的直線與的另一交點為,且的面積為,求橢圓的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,直線與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點為,右焦點為,直線過點,且垂直于橢圓的長軸,動直線垂直于,垂足為點,線段的垂直平分線交于點,求點的軌跡的方程;
(3)設(shè)與軸交于點,不同的兩點在上(與也不重合),且滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓()右頂點到右焦點的距離為,短軸長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過左焦點的直線與橢圓分別交于、兩點,若線段的長為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓的上、下頂點分別為,點在橢圓上,且異于點,直線與直線分別交于點,
(Ⅰ)設(shè)直線的斜率分別為,求證:為定值;
(Ⅱ)求線段的長的最小值;
(Ⅲ)當(dāng)點運動時,以為直徑的圓是否經(jīng)過某定點?請證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com