已知C為線段AB上一點,P為直線AB外一點,滿足

為線段 PC上一點,且有,則的值為( 。

A.1      B.2      C.      D.

 

【答案】

D

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•臺州一模)已知|
OA
|=|
OB
|=2,點C在線段AB上,且|
OC
|的最小值為1,則|
OA
-t
OB
|(t∈R)的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選考題
請從下列三道題當(dāng)中任選一題作答,如果多做,則按所做的第一題計分,請在答題卷上注明題號.
22-1設(shè)函數(shù)f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若g(x)=
1
f(x)+m
定義域為R,求實數(shù)m的取值范圍.
22-2如圖,在△ABC中,CD是∠ACB的角平分線,△ACD的外接圓交BC于E,AB=2AC,
(1)求證:BE=2AD;
(2)當(dāng)AC=1,BC=2時,求AD的長.
22-3已知P為半圓C:
x=cosθ
y=sinθ
(θ為參數(shù),0≤θ≤π)
上的點,點A的坐標(biāo)為(1,0),O為坐標(biāo)原點,點M在射線OP上,線段OM與半圓C上的弧AP的長度均為
π
3

(1)求以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,求點M的極坐標(biāo);
(2)求直線AM的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•佛山一模)如圖,已知圓O的直徑AB長度為4,點D為線段AB上一點,且AD=
1
3
DB
,點C為圓O上一點,且BC=
3
AC
.點P在圓O所在平面上的正投影為點D,PD=BD.
(1)求證:CD⊥平面PAB;
(2)求點D到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•海淀區(qū)一模)已知圓M:(x-
2
2+y2=r2(r>0).若橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右頂點為圓M的圓心,離心率為
2
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)若存在直線l:y=kx,使得直線l與橢圓C分別交于A,B兩點,與圓M分別交于G,H兩點,點G在線段AB上,且|AG|=|BH|,求圓M半徑r的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知A,B是單位圓上的兩點,O為圓心,且∠AOB=120°,MN是圓O的一條直徑,點C在圓內(nèi),且滿足
OC
OA
+(1-λ)
OB
(0<λ<1).
(Ⅰ)求證:點C在線段AB上;
(Ⅱ)求
CM
CN
的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案