【題目】某市為響應(yīng)國家節(jié)能減排建設(shè)的號(hào)召,喚起人們從自己身邊的小事做起,開展了以“再小的力量也是一種支持”為主題的宣傳教育活動(dòng),其中有兩則公益廣告: ①80部手機(jī),一年就會(huì)增加一噸二氧化氮的排放.
②人們?cè)谙硎芷噹Я说谋憬菔孢m的同時(shí),卻不得不呼吸汽車排放的尾氣.
活動(dòng)組織者為了解是市民對(duì)這兩則廣告的宣傳效果,隨機(jī)對(duì)10﹣60歲的人群抽查了n人,并就兩個(gè)問題對(duì)選取的市民進(jìn)行提問,其抽樣人數(shù)頻率分布直方圖如圖所示,宣傳效果調(diào)查結(jié)果如表所示.
宣傳效果調(diào)查表
廣告一 | 廣告二 | |||
回答正 | 占本組 | 回答正 | 占本組 | |
[10,20) | 90 | 0.5 | 45 | a |
[20,30) | 225 | 0.75 | k | 0.8 |
[30,40) | b | 0.9 | 252 | 0.6 |
[40,50) | 160 | c | 120 | d |
[50,60] | 10 | e | f | g |
(1)分別寫出n,a,b,c,d的值.
(2)若將表中的頻率近似看作各年齡組正確回答廣告內(nèi)容的概率,規(guī)定正確回答廣告一的內(nèi)容得30元,廣告二的內(nèi)容得60元.組織者隨機(jī)請(qǐng)一家庭的兩成員(大人45歲,孩子17歲),指定大人回答廣告一的內(nèi)容,孩子回答廣告二的內(nèi)容,求該家庭獲得獎(jiǎng)金數(shù)ξ的分布列及期望.
【答案】
(1)解:由題意知,[10,20)歲中抽查人數(shù)為90÷0.5=180人,
[10,20)歲中抽查人數(shù)的頻率為0.015×10=0.15,
∴n=180÷0.15=1200.
∴a= = ,b=(252÷0.6)×0.9=378.
c ,
d= =
(2)解:由題意知,大人正確回答廣告一內(nèi)容的概率為P(A)= ,
孩子正確回答廣告二的內(nèi)容的概率為P(B)= ,
則ξ可能取值為0,30,60,90,
P(ξ=0)=(1﹣ )(1﹣ )= ,
P(ξ=30)= = ,
P(ξ=60)=(1﹣ ) = ,
P(ξ=90)= = .
∴ξ的分布列為:
ξ | 0 | 30 | 60 | 90 |
P |
∴Eξ= =35
【解析】(1)利用頻率分布直方圖和統(tǒng)計(jì)表求解.(2)由題意知,大人正確回答廣告一內(nèi)容的概率為P(A)= ,孩子正確回答廣告二的內(nèi)容的概率為P(B)= ,ξ可能取值為0,30,60,90,分別求出相應(yīng)的概率,由此能求出該家庭獲得獎(jiǎng)金數(shù)ξ的分布列及期望.
【考點(diǎn)精析】通過靈活運(yùn)用離散型隨機(jī)變量及其分布列,掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m,n,s,t∈R+ , m+n=2, ,其中m、n是常數(shù),當(dāng)s+t取最小值 時(shí),m、n對(duì)應(yīng)的點(diǎn)(m,n)是雙曲線 一條弦的中點(diǎn),則此弦所在的直線方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓 ,點(diǎn) ,求:
(1)過點(diǎn) 的圓的切線方程;
(2) 點(diǎn)是坐標(biāo)原點(diǎn),連接 ,求 的面積 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知長方形ABCD中,AB=2 ,AD= ,M為DC的中點(diǎn),將△ADM沿AM折起,使得平面ADM⊥平面ABCM (Ⅰ)求證:AD⊥BM
(Ⅱ)若點(diǎn)E是線段DB上的一動(dòng)點(diǎn),問點(diǎn)E在何位置時(shí),二面角E﹣AM﹣D的余弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x2﹣ax﹣a)ex .
(1)討論f(x)的單調(diào)性;
(2)若a∈(0,2),對(duì)于任意x1 , x2∈[﹣4,0],都有 恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】考拉茲猜想又名3n+1猜想,是指對(duì)于每一個(gè)正整數(shù),如果它是奇數(shù),則對(duì)它乘3再加1;如果它是偶數(shù),則對(duì)它除以2.如此循環(huán),最終都能得到1.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)程序,輸出的結(jié)果i=( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的定義域是[a,b](a,b為整數(shù)),值域是[0,1],則滿足條件的整數(shù)數(shù)對(duì)(a,b)共有 個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀如圖所示的程序框圖,若輸出的數(shù)據(jù)為58,則判斷框中應(yīng)填入的條件為( )
A.k≤3
B.k≤4
C.k≤5
D.k≤6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】到直線3x-4y+1=0的距離為3,且與此直線平行的直線方程是 ( )
A.3x-4y+4=0
B.3x-4y+4=0或3x-4y-2=0
C.3x-4y+16=0
D.3x-4y+16=0或3x-4y-14=0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com