兩封信隨機投入A,B,C三個空郵箱,則A郵箱的信件數(shù)ξ的數(shù)學(xué)期望Eξ=( )
A.
B.
C.
D.
【答案】分析:先求出兩封信隨機投入A,B,C三個空郵箱的所有情況,在求出投入A郵箱的信件數(shù)分別是0,1,2的情況及其概率,進而即可得出數(shù)學(xué)期望.
解答:解:兩封信隨機投入A,B,C三個空郵箱,共有32=9種情況.
則投入A郵箱的信件數(shù)ξ的概率P(ξ=2)==,P(ξ=1)==,∴P(ξ=0)=1-P(ξ=2)-P(ξ=1)=
∴其分布列為:
∴Eξ=0+1×+=
故選B.
點評:熟練掌握乘法原理、古典概型的概率計算公式、離散型隨機變量的期望的計算公式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

兩封信隨機投入A、B、C三個空郵箱,則A郵箱的信件數(shù)ξ的數(shù)學(xué)期望Eξ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩封信隨機投入A,B,C三個空郵箱,則A郵箱的信件數(shù)ξ的數(shù)學(xué)期望Eξ=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(15)兩封信隨機投入A、BC三個空郵箱,則A郵箱的信件數(shù)的數(shù)學(xué)期望Eξ=_______;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省佛山市高二下學(xué)期期末考試(理科)數(shù)學(xué)卷 題型:填空題

兩封信隨機投入A、B、C三個空郵箱,則A郵箱的信件數(shù)ξ的數(shù)學(xué)期望Eξ=_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪復(fù)習(xí)鞏固與練習(xí):離散型隨機變量的均值與方差、正態(tài)分布(解析版) 題型:解答題

兩封信隨機投入A、B、C三個空郵箱,則A郵箱的信件數(shù)ξ的數(shù)學(xué)期望Eξ=    ;

查看答案和解析>>

同步練習(xí)冊答案