【題目】已知等差數(shù)列{an}中,前mm為奇數(shù))項的和為77,其中偶數(shù)項之和為33,且a1-am=18,則數(shù)列{an}的通項公式為an= ______

【答案】

【解析】

設(shè)公差等于d,由題意可得偶數(shù)項共有項,從而列出方程組求出m,da1,由此能求出數(shù)列{an}的通項公式.

∵等差數(shù)列{an}中,前mm為奇數(shù))項的和為77,

ma1+=77,①

∵其中偶數(shù)項之和為33,由題意可得偶數(shù)項共有項,公差等于2d

a1+d+×2d=33,②

a1-am=18,

a1-am=18=-m-1d,③

由①②③,解得m=7,d=-3,a1=20

an=a1+n-1d=20+n-1×-3=-3n+23

數(shù)列{an}的通項公式為an=-3n+23

故答案為:-3n+23

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】鄭州一中社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時間的頻率分布直方圖:將日均學(xué)習(xí)圍棋時間不低于40分鐘的學(xué)生稱為“圍棋迷”.

(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認(rèn)為“圍棋迷”與性別有關(guān)?

非圍棋迷

圍棋迷

合計

10

55

合計

(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機(jī)抽樣方法每次抽取1名學(xué)生,抽取3次,記被抽取的3名學(xué)生中的“圍棋迷”人數(shù)為.若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列,期望

附:,

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,(為正整數(shù))都在函數(shù)的圖象上.

1)若數(shù)列是等差數(shù)列,證明:數(shù)列是等比數(shù)列;

2)設(shè),過點的直線與兩坐標(biāo)軸所圍成的三角形面積為,試求最小的實數(shù),使對一切正整數(shù)恒成立;

3)對(2)中的數(shù)列,對每個正整數(shù),在之間插入3,得到一個新的數(shù)列,設(shè)是數(shù)列的前項和,試探究2016是否是數(shù)列中的某一項,寫出你探究得到的結(jié)論并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】a-2”x0R,asinx0+20”的( 。

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著科技的發(fā)展,網(wǎng)購已經(jīng)逐漸融入了人們的生活.在家里面不用出門就可以買到自己想要的東西,在網(wǎng)上付款即可,兩三天就會送到自己的家門口,如果近的話當(dāng)天買當(dāng)天就能送到,或者第二天就能送到,所以網(wǎng)購是非常方便的購物方式.某公司組織統(tǒng)計了近五年來該公司網(wǎng)購的人數(shù)(單位:人)與時間(單位:年)的數(shù)據(jù),列表如下:

1

2

3

4

5

24

27

41

64

79

(1)依據(jù)表中給出的數(shù)據(jù),是否可用線性回歸模型擬合的關(guān)系,請計算相關(guān)系數(shù)并加以說明(計算結(jié)果精確到0.01).(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)

附:相關(guān)系數(shù)公式 ,參考數(shù)據(jù).

(2)建立關(guān)于的回歸方程,并預(yù)測第六年該公司的網(wǎng)購人數(shù)(計算結(jié)果精確到整數(shù)).

(參考公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們把一系列向量按次序排成一列,稱之為向量列,記作.已知向量列滿足.

1)證明數(shù)列是等比數(shù)列;

2)求間的夾角;

3)設(shè),問數(shù)列中是否存在最小項?若存在,求出最小項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從分別寫有12,3,4,55張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,則抽得的第一張卡片上的數(shù)大于第二張卡片上的數(shù)的概率為()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:橢圓的焦點在軸上,左焦點與短軸兩頂點圍成面積為的等腰直角三角形,直線與橢圓交于不同兩點、、都在軸上方),且.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)為橢圓與軸正半軸的交點時,求直線的方程;

3)對于動直線,是否存在一個定點,無論如何變化,直線總經(jīng)過此定點?若存在,求出該定點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案