已知集合A={1,2,3,m},B={4,6,7,n4,3n+n2},其中m,n∈N,映射f:A→B滿足f:x→3x+1,則m,n的值分別為(  )
A、m=2,n=5
B、m=5,n=2
C、m=1,n=3
D、m=3,n=1
考點(diǎn):映射
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由映射f:y→3x+1可得
n4=10
3m+1=n2+3n
n4=3m+1
n2+3n=10
,結(jié)合m,n∈N  可求m,n的值.
解答: 解:由映射f:y→3x+1可得
n4=10
3m+1=n2+3n
n4=3m+1
n2+3n=10

∵m,n∈N,
∴n=2,m=5
故選:B.
點(diǎn)評:本題考查了映射的概念,象與原象的關(guān)系,以及考查解方程組,計(jì)算能力也得到培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=|x+2|+|x-4|的最小值為( 。
A、6B、-6C、-2D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)三角形三內(nèi)角既成等差數(shù)列,又成等比數(shù)列,則三內(nèi)角的公差為( 。
A、0°B、15°
C、30°D、60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,S10=15,則a1+a10=(  )
A、3B、6C、10D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在中,“
BA
BC
<0”是“厶ABC為鈍角三角形”的( 。l件.
A、充分不必要
B、必要不充分
C、充分必要
D、既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosα=
3
5
,α為第四象限角,則tanα=( 。
A、1
B、-1
C、
3
4
D、-
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
1-x
+ln(1+x),則f(x)的定義域?yàn)椋ā 。?/div>
A、{x|x>-1}
B、{x|x<1}
C、{x|-1<x<1}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有限集合中元素的個(gè)數(shù),我們可以一一數(shù)出來,而對于元素個(gè)數(shù)無限的集合,如,對于集合A={1,2,3,…,n,…}與B={2,4,6,…,2n,…},我們無法數(shù)出集合中元素的個(gè)數(shù),但可以比較這兩個(gè)集合中元素個(gè)數(shù)的多少,你能設(shè)計(jì)一種比較這兩個(gè)集合中元素個(gè)數(shù)多少的方法嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+x2(a為常數(shù)).
(1)若a=-2,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[1,e]時(shí),f(x)≤(a+2)x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案