【題目】斐波那契數(shù)列{an}滿足: .若將數(shù)列的每一項(xiàng)按照下圖方法放進(jìn)格子里,每一小格子的邊長為1,記前n項(xiàng)所占的格子的面積之和為Sn , 每段螺旋線與其所在的正方形所圍成的扇形面積為cn , 則下列結(jié)論錯(cuò)誤的是( )
A.
B.a1+a2+a3+…+an=an+2﹣1
C.a1+a3+a5+…+a2n﹣1=a2n﹣1
D.4(cn﹣cn﹣1)=πan﹣2an+1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+a(x﹣1),其中a∈R. (Ⅰ) 當(dāng)a=﹣1時(shí),求證:f(x)≤0;
(Ⅱ) 對(duì)任意t≥e,存在x∈(0,+∞),使tlnt+(t﹣1)[f(x)+a]>0成立,求a的取值范圍.
(其中e是自然對(duì)數(shù)的底數(shù),e=2.71828…)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖為中國傳統(tǒng)智力玩具魯班鎖,起源于古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,外觀看是嚴(yán)絲合縫的十字立方體,其上下、左右、前后完全對(duì)稱,六根完全相同的正四棱柱分成三組,經(jīng)90°榫卯起來.現(xiàn)有一魯班鎖的正四棱柱的底面正方形邊長為1,欲將其放入球形容器內(nèi)(容器壁的厚度忽略不計(jì)),若球形容器表面積的最小值為30π,則正四棱柱體的高為( )
A.
B.
C.
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx,g(x)=x+ (x>0)都在x=x0處取得最小值.
(1)求f(x0)﹣g(x0)的值.
(2)設(shè)函數(shù)h(x)=f(x)﹣g(x),h(x)的極值點(diǎn)之和落在區(qū)間(k,k+1),k∈N,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為評(píng)估兩套促銷活動(dòng)方案(方案1運(yùn)作費(fèi)用為5元/件;方案2的運(yùn)作費(fèi)用為2元/件),在某地區(qū)部分營銷網(wǎng)點(diǎn)進(jìn)行試點(diǎn)(每個(gè)試點(diǎn)網(wǎng)點(diǎn)只采用一種促銷活動(dòng)方案),運(yùn)作一年后,對(duì)比該地區(qū)上一年度的銷售情況,制作相應(yīng)的等高條形圖如圖所示.
(1)請(qǐng)根據(jù)等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷活動(dòng)方案(不必說明理由);
(2)已知該公司產(chǎn)品的成本為10元/件(未包括促銷活動(dòng)運(yùn)作費(fèi)用),為制定本年度該地區(qū)的產(chǎn)品銷售價(jià)格,統(tǒng)計(jì)上一年度的8組售價(jià)xi(單位:元/件,整數(shù))和銷量yi(單位:件)(i=1,2,…,8)如下表所示:
售價(jià)x | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
銷量y | 840 | 800 | 740 | 695 | 640 | 580 | 525 | 460 |
①請(qǐng)根據(jù)下列數(shù)據(jù)計(jì)算相應(yīng)的相關(guān)指數(shù)R2 , 并根據(jù)計(jì)算結(jié)果,選擇合適的回歸模型進(jìn)行擬合;
②根據(jù)所選回歸模型,分析售價(jià)x定為多少時(shí)?利潤z可以達(dá)到最大.
|
|
| |
| 49428.74 | 11512.43 | 175.26 |
| 124650 |
(附:相關(guān)指數(shù) )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓 的圓心為F1 , 直線l過點(diǎn)F2(2,0)且不與x軸、y軸垂直,且與圓F1于C,D兩點(diǎn),過F2作F1C的平行線交直線F1D于點(diǎn)E,
(1)證明||EF1|﹣|EF2||為定值,并寫出點(diǎn)E的軌跡方程;
(2)設(shè)點(diǎn)E的軌跡為曲線Γ,直線l交Γ于M,N兩點(diǎn),過F2且與l垂直的直線與圓F1交于P,Q兩點(diǎn),求△PQM與△PQN的面積之和的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是首項(xiàng)為1,公差為2的等差數(shù)列,{bn}是首項(xiàng)為1,公比為q的等比數(shù)列.記cn=an+bn , n=1,2,3,….
(1)若{cn}是等差數(shù)列,求q的值;
(2)求數(shù)列{cn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1(﹣1,0),F(xiàn)2(1,0)分別是橢圓C: =1(a>0)的左、右焦點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若A,B分別在直線x=﹣2和x=2上,且AF1⊥BF1 .
(。┊(dāng)△ABF1為等腰三角形時(shí),求△ABF1的面積;
(ⅱ)求點(diǎn)F1 , F2到直線AB距離之和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(cosx)﹣x與函數(shù)g(x)=cos(sinx)﹣x在區(qū)間 內(nèi)都為減函數(shù),設(shè) ,且cosx1=x1 , sin(cosx2)=x2 , cos(sinx3)=x3 , 則x1 , x2 , x3的大小關(guān)系是( )
A.x1<x2<x3
B.x3<x1<x2
C.x2<x1<x3
D.x2<x3<x1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com