設(shè)a是一個(gè)平面,Γ是平面α上的一個(gè)圖形,若在平面α上存在一個(gè)定點(diǎn)A和一個(gè)定角θ(θ∈(0,2π),使得Γ上的任意一點(diǎn)以A為中心順時(shí)針(或逆時(shí)針)旋轉(zhuǎn)角θ,所得到的圖形與原圖形Γ重合,則稱點(diǎn)A為對(duì)稱中心,θ為旋轉(zhuǎn)角,Γ為旋轉(zhuǎn)對(duì)稱圖形,若以下4個(gè)圖形,從左至右依次是正三角形、正方形、正五邊形、正六邊形,它們都是旋轉(zhuǎn)對(duì)稱圖形,則它們的最小旋轉(zhuǎn)角依次為
 
,若Γ是一個(gè)正n邊形,則其最小旋轉(zhuǎn)角n可以表示為
 

考點(diǎn):歸納推理
專題:綜合題,推理和證明
分析:由題意,對(duì)稱中心為正多邊形的中心,正三角形、正方形、正五邊形、正六邊形,它們都是旋轉(zhuǎn)對(duì)稱圖形,則它們的最小旋轉(zhuǎn)角依次為
3
4
=
π
2
,
5
6
=
π
3
;由此可得Γ是一個(gè)正n邊形的最小旋轉(zhuǎn)角.
解答: 解:由題意,對(duì)稱中心為正多邊形的中心,正三角形、正方形、正五邊形、正六邊形,它們都是旋轉(zhuǎn)對(duì)稱圖形,則它們的最小旋轉(zhuǎn)角依次為
3
4
=
π
2
,
5
,
6
=
π
3
;Γ是一個(gè)正n邊形,則其最小旋轉(zhuǎn)角n可以表示為
n

故答案為:
3
,
π
2
,
5
,
π
3
n
點(diǎn)評(píng):所謂歸納推理,就是從個(gè)別性知識(shí)推出一般性結(jié)論的推理.它與演繹推理的思維進(jìn)程不同.歸納推理的思維進(jìn)程是從個(gè)別到一般,而演繹推理的思維進(jìn)程不是從個(gè)別到一般,是一個(gè)必然地得出的思維進(jìn)程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正方形ABCD的邊長(zhǎng)為1,AC∩BD=O,將正方形ABCD沿對(duì)角線折起,使AC=1,得到三棱錐A-BCD,如圖所示.
(1)求證:AO⊥平面BCD;
(2)求平面ABC與平面BCD夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示,則它的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在某市“創(chuàng)建文明城市”活動(dòng)中,對(duì)800名志愿者的年齡抽樣調(diào)查統(tǒng)計(jì)后得到頻率分布直方圖(如圖),但是年齡組為[25,30)的數(shù)據(jù)不慎丟失,據(jù)此估計(jì)這800名志愿者年齡在[25,30)的人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等腰三角形△ABC中,底邊BC=1,底角平分線BD交AC于點(diǎn)D,求BD的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是(  )
 
A、100 cm3
B、108 cm3
C、84 cm3
D、92 cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)M是線段BC的中點(diǎn),點(diǎn)A在直線BC外,|
BC
|=4,|
AB
+
AC
|=|
AB
-
AC
|
,則
AM
•(
AB
+
AC
)
=(  )
A、8B、4C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
1-sin2440°
+
1-2sin80°cos80°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某網(wǎng)站有10種資料,下載這些資料需要儲(chǔ)值或點(diǎn)數(shù),其中3種資料是精品資料,下載一個(gè)需扣5個(gè)儲(chǔ)值,7種普通資料下載一個(gè)需扣4個(gè)點(diǎn).某人現(xiàn)有20個(gè)點(diǎn)與10個(gè)儲(chǔ)值,準(zhǔn)備下載6種資料(每種資料至多下載一個(gè),儲(chǔ)值只用于下載精品資料,點(diǎn)只用于下載普通資料,點(diǎn)與儲(chǔ)值夠用即可,不必用完),則不同的下載方法的種數(shù)是( 。
A、62B、105
C、168D、231.

查看答案和解析>>

同步練習(xí)冊(cè)答案