【題目】如圖,長方體ABCD﹣A1B1C1D1中,AA1=AB=1,AD=2,E為BC的中點,點M,N分別為棱DD1 , A1D1的中點.
(1)求證:平面CMN∥平面A1DE;
(2)求證:平面A1DE⊥平面A1AE.
【答案】
(1)
證明:∵M(jìn),N分別為棱DD1,A1D1的中點,∴MN∥A1D,
∵A1D平面A1DE,MN平面A1DE,∴MN∥平面A1CD.
∵E是BC中點,N是A1D1的中點,∴A1N=CE,A1N∥CE,
∴四邊形A1ECN是平行四邊形,∴CN∥A1E,
∵A1E平面A1DE,CN平面A1DE,∴CN∥平面A1CD,
又∵M(jìn)N∩CN=N,MN平面MCN,CN平面MCN,
∴平面CMN∥平面A1DE.
(2)
證明:∵AA1⊥平面ABCD,DE平面ABCD,
∴AA1⊥DE.
∵AB=1,AD=2,E為BC的中點,
∴ ,
∴EA2+ED2=AD2,即AE⊥DE.
∵AA1平面AA1E,AE平面AA1E,AE∩AA1=A,
∴DE⊥平面A1AE.
又DE平面A1DE,所以平面A1DE⊥平面A1AE.
【解析】(I)由中位線定理可得MN∥A1D,由長方體的結(jié)構(gòu)特征可得四邊形A1ECN是平行四邊形,故CN∥A1E,從而平面CMN∥平面A1DE;(2)由AA1⊥平面ABCD可得AA1⊥DE,由線段的長度可由勾股定理的逆定理得出AE⊥DE,故DE⊥平面A1AE,從而平面A1DE⊥平面A1AE.
【考點精析】利用平面與平面平行的判定和平面與平面垂直的判定對題目進(jìn)行判斷即可得到答案,需要熟知判斷兩平面平行的方法有三種:用定義;判定定理;垂直于同一條直線的兩個平面平行;一個平面過另一個平面的垂線,則這兩個平面垂直.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線x2+y=8與x軸交于A,B兩點,動點P與A,B連線的斜率之積為 .
(1)求動點P的軌跡C的方程.
(2)MN是動點P軌跡C的一條弦,且直線OM,ON的斜率之積為 .求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某畢業(yè)生參加人才招聘會,分別向甲、乙、丙三個公司投遞了個人簡歷,假定該畢業(yè)生得到甲公司面試的概率為 ,得到乙公司和丙公司面試的概率均為p,且三個公司是否讓其面試是相互獨立的.記ξ為該畢業(yè)生得到面試的公司個數(shù),若P(ξ=0)=
(Ⅰ)求p的值:
(Ⅱ)求隨機變量ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1(﹣1,0),F(xiàn)2(1,0)是橢圓C1與雙曲線C2共同的焦點,橢圓的一個短軸端點為B,直線F1B與雙曲線的一條漸近線平行,橢圓C1與雙曲線C2的離心率分別為e1 , e2 , 則e1+e2取值范圍為( )
A.[2,+∞)
B.[4,+∞)
C.(4,+∞)
D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某樂園按時段收費,收費標(biāo)準(zhǔn)為:每玩一次不超過1小時收費10元,超過1小時的部分每小時收費8元(不足1小時的部分按1小時計算).現(xiàn)有甲、乙二人參與但都不超過4小時,甲、乙二人在每個時段離場是等可能的.為吸引顧客,每個顧客可以參加一次抽獎活動.
(1)用(10,10)表示甲乙玩都不超過1小時的付費情況,求甲、乙二人付費之和為44元的概率;
(2)抽獎活動的規(guī)則是:顧客通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的均勻隨機數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該顧客中獎;若電腦顯示“謝謝”,則不中獎,求顧客中獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為 ,且經(jīng)過點A(0,﹣1).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)如果過點 的直線與橢圓交于M,N兩點(M,N點與A點不重合),求證:△AMN為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD與BDEF均為菱形,設(shè)AC與BD相交于點O,若∠DAB=∠DBF=60°,且FA=FC.
(1)求證:FC∥平面EAD;
(2)求直線AF與平面BCF所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C對邊的邊長分別為a,b,c,給出下列四個結(jié)論: ①以 為邊長的三角形一定存在;
②以 為邊長的三角形一定存在;
③以a2 , b2 , c2為邊長的三角形一定存在;
④以 為邊長的三角形一定存在.
那么,正確結(jié)論的個數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com