已知等差數(shù)列{an}的首項(xiàng)為a,公差為d,且方程ax2-3x+2=0的解為1和d,則數(shù)列{3n-1an}的前n項(xiàng)和Tn為( 。
A、3n
B、1+(n-1)3n
C、n•3n
D、1+(n+1)•3n
考點(diǎn):數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由已知條件推導(dǎo)出an=2n-1,從而得到3n-1an=(2n-1)•3n-1,由此利用錯(cuò)位相減法能求出數(shù)列{3n-1an}的前n項(xiàng)和Tn
解答: 解:∵等差數(shù)列{an}的首項(xiàng)為a,公差為d,
且方程ax2-3x+2=0的解為1和d,
1+d=
3
a
1×d=
2
a
,解得a=1,d=2,
∴an=2n-1a2=1+2=3,
∴3n-1an=(2n-1)•3n-1,
Tn=1×30+3×3+5×32+…+(2n-1)•3n-1.①
3Tn=1×3+3×32+5×33+…+(2n-1)×3n,②
①-②,得:-2Tn=1+2(3+32+33+…+3n-1)-(2n-1)•3n
=1+2×
3(1-3n-1)
1-3
-(2n-1)•3n
=-2-(2n-2)•3n,
Tn=1+(n-1)•3n
故選:B.
點(diǎn)評(píng):本題考查數(shù)列的前n項(xiàng)和的求法,解題時(shí)要認(rèn)真審題,注意錯(cuò)位相減法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的莖葉圖表示的是甲、乙兩人在五次綜合測(cè)評(píng)中的成績(jī),期中一個(gè)數(shù)字被污損,則甲的平均成績(jī)不超過乙的平均成績(jī)的概率為( 。
A、
4
5
B、
3
5
C、
2
5
D、
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線x2-
y2
b2
=1(b>0)的一條漸近線與圓x2+(y-2)2=1至多有一個(gè)交點(diǎn),則雙曲線離心率的取值范圍是( 。
A、(1,2]
B、[2,+∞)
C、(1,
3
]
D、[
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

先后拋擲紅、藍(lán)兩枚骰子,事件A:紅骰子出現(xiàn)3點(diǎn),事件B:藍(lán)骰子出現(xiàn)的點(diǎn)數(shù)為奇數(shù),則P(A|B)=( 。
A、
1
6
B、
1
3
C、
1
2
D、
5
36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式x2-x+a>0恒成立,則a的取值范圍為( 。
A、[
1
4
,+∞)
B、(
1
4
,+∞)
C、(-∞,
1
4
]
D、(-∞,
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α為銳角,且sin(α-
π
4
)=
1
3
,則sinα=(  )
A、
4+
2
6
B、
4-
2
6
C、
1+
2
3
D、
2
2
-1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若執(zhí)行如圖所示的程序框圖,當(dāng)輸入n=1,m=5,則輸出p的值為( 。
A、-4B、1C、2D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列所給4個(gè)圖象中,與所給3件事吻合最好的順序?yàn)椋ā 。?br />(1)我離開家不久,發(fā)現(xiàn)自己把作業(yè)本忘在家里了,于是立刻返回家里取了作業(yè)本再上學(xué);
(2)我騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時(shí)間;
(3)我出發(fā)后,心情輕松,緩緩行進(jìn),后來為了趕時(shí)間開始加速.
(1)(2)(3)(4)時(shí)間時(shí)間時(shí)間時(shí)間離開家的距離離開家的距離離開家的距離離開家的距離
A、(1)(2)(4)
B、(4)(2)(3)
C、(4)(1)(3)
D、(4)(1)(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x3-6x2-18x-7,x∈[-2,5].
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)的極值與最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案