已知函數(shù).
(1)證明:;
(2)當(dāng)時(shí),,求的取值范圍.
(1)證明過程詳見解析;(2).

試題分析:本題考查導(dǎo)數(shù)的運(yùn)算以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值等基礎(chǔ)知識,考查綜合分析問題解決問題的能力、轉(zhuǎn)化能力和計(jì)算能力.第一問,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032247314434.png" style="vertical-align:middle;" />,所求證,所以只需分母即可,設(shè)函數(shù),對求導(dǎo),判斷函數(shù)的單調(diào)性,求出最小值,證明最小值大于0即可,所求證的不等式的右邊,需證明函數(shù)的最大值為1即可,對求導(dǎo),判斷單調(diào)性求最大值;第二問,結(jié)合第一問的結(jié)論,討論的正負(fù),當(dāng)時(shí),,而矛盾,當(dāng)時(shí),當(dāng)時(shí),矛盾,當(dāng)時(shí),分母去分母,等價(jià)于,設(shè)出新函數(shù),需要討論的情況,判斷在每種情況下,是否大于0,綜合上述所有情況,寫出符合題意的的取值范圍.
試題解析:(Ⅰ)設(shè),則
當(dāng)時(shí),,單調(diào)遞減;
當(dāng)時(shí),,單調(diào)遞增.
所以
,故.           2分

當(dāng)時(shí),單調(diào)遞增;
當(dāng)時(shí),單調(diào)遞減.
所以
綜上,有.           5分
(Ⅱ)(1)若,則時(shí),,不等式不成立.  6分
(2)若,則當(dāng)時(shí),,不等式不成立.  7分
(3)若,則等價(jià)于.  ①
設(shè),則
,則當(dāng),單調(diào)遞增,. 9分
,則當(dāng),單調(diào)遞減,
于是,若,不等式①成立當(dāng)且僅當(dāng).      11分
綜上,的取值范圍是
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),().
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求證:當(dāng)時(shí),對于任意,總有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)處取得極值.
(Ⅰ)求的值;
(Ⅱ)證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

使y=sin xax在R上是增函數(shù)的a的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=-x3x2g(x)=aln x,a∈R.
(1)若對任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范圍;
(2)設(shè)F(x)=P是曲線yF(x)上異于原點(diǎn)O的任意一點(diǎn),在曲線yF(x)上總存在另一點(diǎn)Q,使得△POQ中的∠POQ為鈍角,且PQ的中點(diǎn)在y軸上,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)f(x)=x3-3axb(a>0)的極大值為6,極小值為2,則f(x)的單調(diào)遞減區(qū)間是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

可導(dǎo)函數(shù)的導(dǎo)函數(shù)為,且滿足:①;②,記, ,的大小順序?yàn)椋ā 。?table name="optionsTable" cellpadding="0" cellspacing="0" width="100%">A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),點(diǎn)處取到極值,其中是坐標(biāo)原點(diǎn),在曲線上,則曲線的切線的斜率的最大值是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若冪函數(shù)f(x)的圖象過點(diǎn)(),則函數(shù)g(x)=f(x)的單調(diào)遞減區(qū)間為(   )
A.(-∞,0)B.(-∞,-2)C.(-2,-1)D.(-2,0)

查看答案和解析>>

同步練習(xí)冊答案