【題目】返鄉(xiāng)創(chuàng)業(yè)的大學(xué)生一直是人們比較關(guān)注的對象,他們從大學(xué)畢業(yè),沒有選擇經(jīng)濟發(fā)達的大城市,而是回到自己的家鄉(xiāng),為養(yǎng)育自己的家鄉(xiāng)貢獻自己的力量,在享有“國際花園城市”稱號的溫江幸福田園,就有一個由大學(xué)畢業(yè)生創(chuàng)辦的農(nóng)家院“小時代”,其獨特的裝修風格和經(jīng)營模式,引來無數(shù)人的關(guān)注,帶來紅紅火火的現(xiàn)狀,給青年大學(xué)生們就業(yè)創(chuàng)業(yè)上很多新的啟示.在接受采訪中,該老板談起以下情況:初期投入為72萬元,經(jīng)營后每年的總收入為50萬元,第n年需要付出房屋維護和工人工資等費用是首項為12,公差為4的等差數(shù)列(單位:萬元).
(1)求;
(2)該農(nóng)家樂第幾年開始盈利?能盈利幾年?(即總收入減去成本及所有費用之差為正值)
(3)該農(nóng)家樂經(jīng)營多少年,其年平均獲利最大?年平均獲利的最大值是多少?(年平均獲利前年總獲利)
【答案】(1);(2)第3年開始盈利;能盈利15年;(3)經(jīng)過6年經(jīng)營年平均獲利最大,最大值為16萬元.
【解析】
(1)利用等差數(shù)列的通項公式即可求解.
(2)設(shè)農(nóng)家樂第n年后開始盈利,盈利為y萬元,則,令,解不等式即可.
(3)列出年平均獲利,利用基本不等式即可求解.
解:(1)由題意知,每年需付出的費用是以12為首項,4為公差的等差數(shù)列,
∴
(2)設(shè)該農(nóng)家樂第n年后開始盈利,盈利為y萬元,
則
由,得,解得,
故.
即第3年開始盈利.能盈利15年.
(3)年平均獲利為
當且僅當,即時,年平均獲利最大.
故經(jīng)過6年經(jīng)營年平均獲利最大,最大值為16萬元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中, 、分別為、的中點, , .
(1)求證:平面平面;
(2)若直線和平面所成角的正弦值等于,求二面角的平面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某射擊運動員,每次擊中目標的概率都是.現(xiàn)采用隨機模擬的方法估計該運動員射擊次至少擊中次的概率:先由計算器算出到之間取整數(shù)值的隨機數(shù),指定,表示沒有擊中目標,,,,,,,,表示擊中目標;因為射擊次,故以每個隨機數(shù)為一組,代表射擊次的結(jié)果.經(jīng)隨機模擬產(chǎn)生了如下組隨機數(shù):
據(jù)此估計,該射擊運動員射擊次至少擊中次的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市隨機選取位顧客,記錄了他們購買甲、乙、丙、丁四種商品的情況,整理成如下統(tǒng)計表,其中“√”表示購買,“×”表示未購買.
甲 | 乙 | 丙 | 丁 | |
√ | × | √ | √ | |
× | √ | × | √ | |
√ | √ | √ | × | |
√ | × | √ | × | |
85 | √ | × | × | × |
× | √ | × | × |
(Ⅰ)估計顧客同時購買乙和丙的概率;
(Ⅱ)估計顧客在甲、乙、丙、丁中同時購買中商品的概率;
(Ⅲ)如果顧客購買了甲,則該顧客同時購買乙、丙、丁中那種商品的可能性最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每隔30 min從該生產(chǎn)線上隨機抽取一個零件,并測量其尺寸(單位:cm).下面是檢驗員在一天內(nèi)依次抽取的16個零件的尺寸:
抽取次序 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
零件尺寸 | 9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
抽取次序 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
零件尺寸 | 10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經(jīng)計算得, , , ,其中為抽取的第個零件的尺寸, .
(1)求 的相關(guān)系數(shù),并回答是否可以認為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進行而系統(tǒng)地變大或變。ㄈ,則可以認為零件的尺寸不隨生產(chǎn)過程的進行而系統(tǒng)地變大或變。
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當天的生產(chǎn)過程進行檢查.
(。⿵倪@一天抽檢的結(jié)果看,是否需對當天的生產(chǎn)過程進行檢查?
(ⅱ)在之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計這條生產(chǎn)線當天生產(chǎn)的零件尺寸的均值與標準差.(精確到0.01)
附:樣本 的相關(guān)系數(shù), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若的圖象在點處的切線方程為,求在區(qū)間[-2,4]上的最大值;
(2)當時,若在區(qū)間(-1,1)上不單調(diào),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位共有500名職工,其中不到35歲的有125人,35-49歲的有a人,50歲及以上的有b人,現(xiàn)用分層抽樣的方法,從中抽出100名職工了解他們的健康情況:
(1)求不到35歲的職工要抽取的人數(shù);
(2)如果已知35-49歲的職工抽取了56人,求a的值,并求50歲及以上的職工要抽取的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)若對于任意的, 恒成立,求實數(shù)的取值范圍;
(2)若,設(shè)函數(shù)在區(qū)間上的最大值、最小值分別為、,記,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com