【題目】已知函數(shù)在區(qū)間[-1,4]上有最大值10和最小值1.設(shè)
(1)求的值;
(2)證明:函數(shù)在上是增函數(shù).
(3)若不等式在上有解,求實數(shù)的取值范圍.
【答案】(1)(2)詳見解析(3)
【解析】
試題分析:(1)根據(jù)函數(shù)的對稱軸得到關(guān)于a的方程組,解出即可;(2)先求出g(x)的表達(dá)式,根據(jù)定義證明函數(shù)的單調(diào)性即可;(3)問題轉(zhuǎn)化為,令,則k≤2t2-2t+1,構(gòu)造新函數(shù),結(jié)合函數(shù)的單調(diào)性從而求出k的范圍即可
試題解析:(1)
因為a>0, 故,解得. ……………………4分
(2)由已知可得,設(shè),
∵ …………………6分
∵,∴x1-x2<0,2<x1x2,即x1x2-2>0.
∴g(x1)-g(x2)<0,即g(x1)<g(x2).
所以函數(shù)g(x)在上是增函數(shù) ………………………………………8分
(3) 可化為,
化為令,則 ……………………10分
因,故
記因為,故,
所以k的取值范圍是 ………………………………………………………12分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義域為R的奇函數(shù).
(1)求的值;
(2)若,試判斷的單調(diào)性(不需證明),并求使不等式恒成立的t的取值范圍;
(3)若,,求在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】五一節(jié)期間,某商場為吸引顧客消費推出一項優(yōu)惠活動.活動規(guī)則如下:消費額每滿100元可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券.(假定指針等可能地停在任一位置, 指針落在區(qū)域的邊界時,重新轉(zhuǎn)一次)指針?biāo)诘膮^(qū)域及對應(yīng)的返劵金額見右下表.
例如:消費218元,可轉(zhuǎn)動轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.
(1)已知顧客甲消費后獲得次轉(zhuǎn)動轉(zhuǎn)盤的機會,已知他每轉(zhuǎn)一次轉(zhuǎn)盤指針落在區(qū)域邊界的概率為,每次轉(zhuǎn)動轉(zhuǎn)盤的結(jié)果相互獨立,設(shè)為顧客甲轉(zhuǎn)動轉(zhuǎn)盤指針落在區(qū)域邊界的次數(shù),的數(shù)學(xué)期望,方差.求、的值;
(2)顧客乙消費280元,并按規(guī)則參與了活動,他獲得返券的金額記為(元).求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),在上任取三個數(shù),均存在以為三邊的三角形,則實數(shù)的取值范圍為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答下列各題:
(1)在△ABC中,已知C=45°,A=60°,b=2,求此三角形最小邊的長及a與B的值;
(2)在△ABC中,已知A=30°,B=120°,b=5,求C及a與c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)寫出函數(shù)的定義域和值域;
(Ⅱ)證明函數(shù)在為單調(diào)遞減函數(shù);
(Ⅲ)試判斷函數(shù)的奇偶性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是 ( )
A. 多面體至少有四個面
B. 九棱柱有9條側(cè)棱,9個側(cè)面,側(cè)面為平行四邊形
C. 長方體、正方體都是棱柱
D. 三棱柱的側(cè)面為三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了比較兩種治療失眠癥的藥(分別稱為A藥,B藥)的療效,隨機地選取20位患者服用A藥,20位患者服用B藥,這40位患者在服用一段時間后,記錄他們?nèi)掌骄黾拥乃邥r間(單位:h),試驗的觀測結(jié)果如下:
服用A藥的20位患者日平均增加的睡眠時間:
服用B藥的20位患者日平均增加的睡眠時間:
(Ⅰ)分別計算兩組數(shù)據(jù)的平均數(shù),從計算結(jié)果看,哪種藥的療效更好?
(Ⅱ)根據(jù)兩組數(shù)據(jù)完成下面莖葉圖,從莖葉圖看,哪種藥的療效更好?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com