【題目】在一個(gè)半徑為1的半球材料中截取兩個(gè)高度均為的圓柱,其軸截面如圖所示.設(shè)兩個(gè)圓柱體積之和為

(1)的表達(dá)式,并寫出的取值范圍;

(2)求兩個(gè)圓柱體積之和的最大值.

【答案】(1)見解析 (2)

【解析】試題分析:1)圓柱的高、底面的半徑和球的半徑是一個(gè)直角三角形的三邊,故可以得到兩個(gè)圓柱的底面半徑分別為, ,由此可以計(jì)算出兩個(gè)圓柱的體積之和以及的取值范圍.(2)因?yàn)?/span>,利用導(dǎo)數(shù)討論該函數(shù)的單調(diào)性,從而求得的最大值為

解析:(1自下而上兩個(gè)圓柱的底面半徑分別為: 它們的高均為,所以體積之和

因?yàn)?/span>,所以的取值范圍是

(2) ,得,,因?yàn)?/span>,得 所以當(dāng)時(shí), ;當(dāng)時(shí), .所以上為增函數(shù),在上為減函數(shù),所以當(dāng)時(shí), 取得極大值也是最大值, 的最大值為

答:兩個(gè)圓柱體積之和的最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(x,﹣1), =(x﹣2,3), =(1﹣2x,6).
(1)若 ⊥(2 + ),求| |;
(2)若 <0,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)f(x)=4x2-2(t-2)x-2t2-t+1在區(qū)間[-1,1]內(nèi)至少存在一個(gè)值m,使得f(m)>0,則實(shí)數(shù)t的取值范圍( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商品一年內(nèi)出廠價(jià)格在6元的基礎(chǔ)上按月份隨正弦曲線波動(dòng),已知3月份達(dá)到最高價(jià)格8元,7月份價(jià)格最低為4元,該商品在商店內(nèi)的銷售價(jià)格在8元基礎(chǔ)上按月份隨正弦曲線波動(dòng),5月份銷售價(jià)格最高為10元,9月份銷售價(jià)最低為6元,假設(shè)商店每月購(gòu)進(jìn)這種商品m件,且當(dāng)月銷完,你估計(jì)哪個(gè)月份盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)的定義域?yàn)镽,且滿足

(1)f(1)=3

(2)對(duì)于任意的,總有

(3)對(duì)于任意的

(I)求f(0)及f(-1)的值

(II)求證:函數(shù)y=f(x)-1為奇函數(shù)

(III)若,求實(shí)數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過點(diǎn)A(-1,0),8(0,3),圓心C在第一象限,線段AB的垂直平分線交圓C 于點(diǎn)D,E,DE =2

(1)求直線DE的方程;

(2)求圓C的方程;

(3)過點(diǎn)(0,4)作圓C的切線,求切線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖所示,則f(x)的單調(diào)遞減區(qū)間為(

A.(kπ﹣ ,kπ+ ,),k∈z
B.(2kπ﹣ ,2kπ+ ),k∈z
C.(k﹣ ,k+ ),k∈z
D.( ,2k+ ),k∈z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)是這樣定義的:對(duì)于任意整數(shù)m,當(dāng)實(shí)數(shù)x滿足不等式|x﹣m|< 時(shí),有f(x)=m.
(1)求函數(shù)f(x)的定義域D,并畫出它在x∈D∩[0,3]上的圖象;
(2)若數(shù)列an=2+10( n , 記Sn=f(a1)+f(a2)+f(a3)+…+f(an),求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的兩個(gè)焦點(diǎn)分別為, ,且點(diǎn)在橢圓.

1求橢圓的標(biāo)準(zhǔn)方程;

2設(shè)橢圓的左頂點(diǎn)為,過點(diǎn)的直線與橢圓相交于異于的不同兩點(diǎn),求的面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案