函數(shù)f(x)=sin3x+3cosx的值域為( )
A.[-4,4]
B.[-3,3]
C.[-4,4)
D.(-3,3)
【答案】分析:由于f(x)是一個周期函數(shù),只需研究[0,2π]上的值域即可,根據(jù)極值與最值的求解方法,將f(x)的各極值與其端點的函數(shù)值比較,其中最大的一個就是最大值,最小的一個就是最小值.
解答:解:∵f(x)=sin3x+3cosx∴周期為2π可研究[0,2π)上的最值即可
∴f′(x)=3sin2xcosx-3sinx=3sinx(sinxcosx-1)=3sinx(sin2x-1)
令f′(x)=0解得sinx=0,解得x=0或π
當x∈(0,π)時,f′(x)<0
當x∈(π,2π)時,f′(x)>0
∴當x=π時取極小值也是最小值,最小值為-3
f(0)=3,f(2π)=3,故最大值為3,故選B
點評:本題主要考查了函數(shù)的值域,以及利用導數(shù)求閉區(qū)間上函數(shù)的最值,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知角a的頂點在原點,始邊與x軸的正半軸重合,終邊經(jīng)過點P(-3,
3
).
(1)定義行列式
.
ab
cd
.
=a•d-b•c,解關(guān)于x的方程:
.
cosxsinx
sinacosa
.
+1=0;
(2)若函數(shù)f(x)=sin(x+a)+cos(x+a)(x∈R)的圖象關(guān)于直線x=x0對稱,求tanx0的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的圖象過點(
π8
,-1).
(1)求φ;  
(2)求函數(shù)y=f(x)的周期和單調(diào)增區(qū)間;
(3)在給定的坐標系上畫出函數(shù)y=f(x)在區(qū)間,[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sin(ωx+?)(x∈R,ω>0,0≤?<2π)的部分圖象如圖,則
( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(wx+
π
2
)(w>0),其圖象上相鄰的兩個最低點間的距離為2π.
(1)求ω的值及f(x)
(2)若a∈(-
π
3
,
π
2
),f(a+
π
3
)=
1
3
,求sin(2a+
3
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•紅橋區(qū)一模)函數(shù)f(x)=sin(2ωx+
π
6
)+1(x∈R)圖象的兩相鄰對稱軸間的距離為1,則正數(shù)ω的值等于(  )

查看答案和解析>>

同步練習冊答案