5.已知F是拋物線y2=16x的焦點(diǎn),A,B是該拋物線上的兩點(diǎn),|AF|+|BF|=12,則線段AB中點(diǎn)到y(tǒng)軸的距離為( 。
A.8B.6C.2D.4

分析 根據(jù)拋物線的方程求出準(zhǔn)線方程,利用拋物線的定義:拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,列出方程求出A,B的中點(diǎn)橫坐標(biāo),求出線段AB的中點(diǎn)到該拋物線準(zhǔn)線的距離.

解答 解:∵F是拋物線y2=16x的焦點(diǎn),
∴F(4,0),準(zhǔn)線方程x=-4,
設(shè)A(x1,y1),B(x2,y2
∴|AF|+|BF|=x1+4+x2+4=12,
即有x1+x2=4,
∴線段AB的中點(diǎn)橫坐標(biāo)為$\frac{1}{2}$(x1+x2)=2,
∴線段AB的中點(diǎn)到y(tǒng)軸的距離為2.
故選:C.

點(diǎn)評 本題考查解決拋物線上的點(diǎn)到焦點(diǎn)的距離問題,利用拋物線的定義將到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知$f(x)={({x+1})^2}\;,\;\;g(x)=\frac{x-1}{x+1}$,則f(x)•g(x)=x2-1,(x≠-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.一個幾何體的三視圖如圖所示(單位:m),正視圖和俯視圖的上面均是底邊長為12m的等腰直角三角形,下面均是邊長為6m的正方形,則該幾何體的體積為216+72πm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知變量x,y滿足$\left\{\begin{array}{l}{2x-y≤0}\\{2-2y+3≥0}\\{x≥0}\end{array}\right.$,則z=log4(2x+y+4)的最大值為( 。
A.$\frac{3}{2}$B.1C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)上一點(diǎn)到兩焦點(diǎn)間的距離之和為2$\sqrt{2}$,直線4x-3y+3=0被以橢圓C的短軸為直徑的圓M截得的弦長為$\frac{8}{5}$.
(1)求橢圓C的方程;
(2)若橢圓C上存在兩個不同的點(diǎn)A,B,關(guān)于直線l:y=-$\frac{1}{k}$(x+$\frac{1}{2}$)對稱.且:△AOB面積為$\frac{\sqrt{6}}{4}$,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若橢圓$\frac{{x}^{2}}{k+4}$+$\frac{{y}^{2}}{12}$=1的離心率為$\frac{1}{2}$,則實(shí)數(shù)k的值為5或12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知銳角△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若acosB=4csinC-bcosA,則cosC=$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在平面直角坐標(biāo)系xOy中,雙曲線$\frac{x^2}{3}-{y^2}=1$的一條準(zhǔn)線與拋物線y2=2px(p>0)的準(zhǔn)線重合,則實(shí)數(shù)p的值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若?(p∧q)為假命題,則( 。
A.p為真命題,q為假命題B.p為假命題,q為假命題
C.p為真命題,q為真命題D.p為假命題,q為真命題

查看答案和解析>>

同步練習(xí)冊答案