已知函數(shù)f(x)=ax2-1,a∈R,x∈R,設(shè)集合A={x|f(x)=x},集合B={x|f(f(x))=x},且A=B≠∅,求a的取值范圍.
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專題:集合
分析:根據(jù)條件確定A,B集合的元素,再根據(jù)集合A、B相等的條件,求出a的取值范圍.
解答: 解:①當(dāng)a=0時,顯然成立
②當(dāng)a≠0時
∵A≠Ф即方程ax2-1=x有實數(shù)根
∴△=(-1)2-4a×(-1)≥0
解得:a≥-
1
4

方程f(f(x))=x可化作:(ax2-x-1)(a2•x2+ax+1-a)=0
∵A=B
∴a2•x2+ax+1-a=0無實數(shù)根
∴△=a2-4a2(1-a)<0
解得:a<
3
4

∴-
1
4
≤a<0或0<a<
3
4

綜上所述,a∈[-
1
4
3
4
點(diǎn)評:本題主要考查集合的相等等基本運(yùn)算,屬于基礎(chǔ)題.要正確判斷兩個集合間相等的關(guān)系,必須對集合的相關(guān)概念有深刻的理解,善于抓住代表元素,認(rèn)清集合的特征.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax-1
x-3
的反函數(shù)是f(x)本身,則實數(shù)a的值為( 。
A、a=1B、a=-3
C、a=3D、不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集R為實數(shù)集合,集合A={x|1≤x≤4},B={x|m+1≤x≤2m-1},當(dāng)m=3時,求∁R(A∪B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin2x-2sin2x
(1)求函數(shù)f(x)的最小正周期;        
(2)解方程f(x)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x+1)的定義域為(-2,3),求函數(shù)f(2x2-2)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知鈍角三角形的三邊長是三個連續(xù)偶數(shù),求此三角形的三邊長和面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若在定義域內(nèi)存在實數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”.
(Ⅰ)已知函數(shù)f(x)=ax2+2x-4a(a∈R,a≠0),試判斷f(x)是否為“局部奇函數(shù)”?并說明理由;
(Ⅱ)若f(x)=4x-m•2x+1+m2-3為定義域R上的“局部奇函數(shù)”,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={2,a2-a+3,a2+2a+3},B={1,a-3,a2+a-4,a2-3a+7},且A∩B={2,5},求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an},已知a1=1,an+1=r•an+r(n∈N+,r∈R且r≠0),若數(shù)列成等差數(shù)列,則r為
 

查看答案和解析>>

同步練習(xí)冊答案