三棱錐S-ABC中,SA⊥底面ABC,SA=4,AB=3,D為AB的中點∠ABC=90°,則點D到面SBC的距離等于
 
分析:先由面面垂直的性質(zhì)找出點D到面SBC的距離DE,再利用三角形相似,對應(yīng)邊成比例求出DE的值.
解答:解:∵SA⊥底面ABC,SA=4,AB=3,D為AB的中點,∠ABC=90°,
∴BC⊥面SAB∴面 SBC⊥面SAB,在面SAB中,作DE⊥SB,
則 DE⊥面SBC,DE為所求.
由△BDE∽△BSA 得:
DE
SA
=
BD
BS
DE
4
=
3
2
5
,
∴DE=
6
5
點評:本題考查線面垂直、面面垂直性質(zhì)的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在三棱錐S-ABC中∠ACB=90°,SA⊥面ABC,AC=2,BC=
13
,SB=
29

(1)證明SC⊥BC.
(2)求側(cè)面SBC與底面ABC所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐S-ABC中,SC⊥平面ABC,點P、M分別是SC和SB的中點,設(shè)PM=AC=1,∠ACB=90°,直線AM與直線SC所成的角為60°.
(1)求證:平面MAP⊥平面SAC.
(2)求二面角M-AC-B的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐S-ABC中,△ABC是邊長為4的正三角形,平面SAC⊥平面ABC,SA=SC=2
3
,M,N分別為AB,SB的中點.
(1)證明:AC⊥SB;
(2)求二面角N-CM-B的大;
(3)求點B到平面CMN的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐S-ABC中,△ABC是邊長為8的正三角形,SA=SC=2
7
,二面角S-AC-B的大小為60°
(1)求證:AC⊥SB;
(2)求三棱錐S-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐S-ABC中,平面SBC⊥平面ABC,SB=SC=AB=2,BC=2
2
,∠BAC=90°,O為BC中點.
(Ⅰ)求點B到平面SAC的距離;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

同步練習(xí)冊答案