數(shù)列{an}中,a1=2,an+1=2+
n
an
(n∈N*),求證:an<1+
n+1
考點:數(shù)列遞推式
專題:點列、遞歸數(shù)列與數(shù)學歸納法
分析:把已知的數(shù)列遞推式變形,把要證的不等式轉化為證an+1
n+1
+1
,然后利用數(shù)學歸納法證明.
解答: 證明:由an+1=2+
n
an
,得an=
n
an+1-2
,
要證an<1+
n+1
,即證
n
an+1-2
<1+
n+1
=
n
n+1
-1
,
∵a1=2,an+1=2+
n
an
,∴an+1-2>0,
也就是證an+1
n+1
+1

下面用數(shù)學歸納法證明:
當n=1時,a1=2,a2=2+
1
a1
=3>
1+1
+1
,結論成立;
假設當n=k時結論成立,即ak<1+
k+1
,
那么,當n=k+1時,ak+1=2+
k
ak
>2+
k
1+
k+1
=2+
k(
k+1
-1)
k
=
k+1
+1

當n=k+1時結論成立.
綜上所述,對于任意的n∈N*結論成立.
∴an<1+
n+1
點評:本題考查了數(shù)列遞推式,考查了利用數(shù)學歸納法證明與自然數(shù)有關的命題,解答此題的關鍵在于把要證的不等式轉化為證an+1
n+1
+1
,難度較大.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E、F分別是BB1、CC1的中點,求異面直線AE和BF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,(
2
a-c)cosB=bcosC,cos2A+1-
8
5
cosA=0,則tan(
π
4
+A)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求過三點A(1,4),B(-2,3),C(4,-5)的圓的方程,并求這個圓的圓心坐標和半徑長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的奇函數(shù)f(x)在[0,3]上單調遞增,且對于任意的x,y∈R都有f(x+y)=f(x)f(3-y)+f(3-x)f(y)
(1)求f(0)和f(1)的值;
(2)求證:f(x)為周期函數(shù);
(3)求滿足不等式f(4x+1)≥
1
2
的實數(shù)x的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設g(x)=|x-1|+|x-2|,若當任意x∈R時,g(x)≥a2+a+1恒成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x2-alnx,則f(x)在[1,+∞)上的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐S-ABCD中,平面SCD⊥底面ABCD,底面ABCD是菱形,AD=2
3
,且SA=SD=
39
.二面角S-AD-B大小為120°
(1)求∠ADC的大小;
(2)求二面角A-SD-C的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了鼓勵大家少用電,供電部門規(guī)定,當每月用電不超過200度時,按每度0.56元收費;當每月用電量超過200度但不超過400度時,超過的部分按每度1元收費;超過400度的部分按每度2元收費試求:
(1)求出月用電量x(度)與每月電費y(元)之間的函數(shù)關系式;
(2)小李家在6月份所付電費為305元,問小李家在6月份的用電量為多少?

查看答案和解析>>

同步練習冊答案