【題目】已知函數(shù)f(x)滿足f(﹣x)=f(x),且f(x+2)=f(x)+f(2),當x∈[0,1]時,f(x)=x,那么在區(qū)間[﹣1,3]內(nèi),關(guān)于x的方程f(x)=kx+k+1(k∈R)且k≠﹣1恰有4個不同的根,則k的取值范圍是
【答案】(- , 0)
【解析】解:∵當x∈[0,1]時,f(x)=x,∴f(0)=0,
∵f(﹣x)=f(x),且f(x+2)=f(x)+f(2),
∴函數(shù)y=f(x)為偶函數(shù),
令x=﹣2,則f(﹣2+2)=f(﹣2)+f(2)=f(0)=0,
即2f(2)=0,則f(2)=0,
即f(x+2)=f(x)+f(2)=f(x),
即函數(shù)f(x)是周期為2的周期數(shù)列,
若x∈[﹣1,0],則﹣x∈[0,1]時,
此時f(﹣x)=﹣x=f(x),
∴f(x)=﹣x,x∈[﹣1,0],
令y=kx+k+1,則化為y=k(x+1)+1,即直線y=k(x+1)+1恒過M(﹣1,1).
作出f(x),x∈[﹣1,3]的圖象與直線y=k(x+1)+1,
如圖所示,由圖象可知當直線介于直線MA與MB之間時,
關(guān)于x的方程f(x)=kx+k+1恰有4個不同的根,
又∵kMA=0,kMB=- ,
∴-<k<0.
所以答案是:(- , 0).
科目:高中數(shù)學 來源: 題型:
【題目】面對擁堵難題,濟南治堵不舍晝夜.軌道交通1號線已于2019年元旦通車試運行,比原定工期提前8個月,其他各條地鐵線路的建設(shè)也正在如火如荼的進行中,完工投入運行后將給市民出行帶來便利.已知某條線路通車后,地鐵的發(fā)車時間間隔為(單位:分鐘),并且.經(jīng)市場調(diào)研測算,地鐵載客量與發(fā)車時間間隔相關(guān),當時,地鐵為滿載狀態(tài),載客量為450人;當時,載客量會減少,減少的人數(shù)與的平方成正比,且發(fā)車時間間隔為2分鐘時的載客量為258人,記地鐵載客量為(單位:人).
(1)求的表達式,并求當發(fā)車時間間隔為5分鐘時,地鐵的載客量;
(2)若該線路每分鐘的利潤為(單位:元),問當發(fā)車時間間隔為多少時,該線路每分鐘的利潤最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為了檢查一條流水線的生產(chǎn)情況,從該流水線上隨機抽取40件產(chǎn)品,測量這些產(chǎn)品的重量(單位:克),整理后得到如下的頻率分布直方圖(其中重量的分組區(qū)間分別為(490,495],(495,500],(500,505],(505,510],(510,515]) (I)若從這40件產(chǎn)品中任取兩件,設(shè)X為重量超過505克的產(chǎn)品數(shù)量,求隨機變量X的分布列;
(Ⅱ)若將該樣本分布近似看作總體分布,現(xiàn)從該流水線上任取5件產(chǎn)品,求恰有兩件產(chǎn)品的重量超過505克的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
若函數(shù),求在上的最小值;
Ⅱ記函數(shù),若函數(shù)在上有兩個零點,,求實數(shù)a的取值范圍,并證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為了確定工效,進行了5次試驗,收集數(shù)據(jù)如下:
加工零件個數(shù)(個) | 10 | 20 | 30 | 40 | 50 |
加工時間(分鐘) | 64 | 69 | 75 | 82 | 90 |
經(jīng)檢驗,這組樣本數(shù)據(jù)的兩個變量與具有線性相關(guān)關(guān)系,那么對于加工零件的個數(shù)與加工時間這兩個變量,下列判斷正確的是( )
A. 負相關(guān),其回歸直線經(jīng)過點 B. 正相關(guān),其回歸直線經(jīng)過點
C. 負相關(guān),其回歸直線經(jīng)過點 D. 正相關(guān),其回歸直線經(jīng)過點
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對的邊分別是a,b,c,且cosC+=1.
(1)求角A的大小;
(2)若a=1,求△ABC的周長l的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,,為自然對數(shù)的底數(shù).
(Ⅰ)若函數(shù)在上存在零點,求實數(shù)的取值范圍;
(Ⅱ)若函數(shù)在處的切線方程為.求證:對任意的,總有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在扶貧活動中,為了盡快脫貧(無債務(wù))致富,企業(yè)甲將經(jīng)營狀況良好的某種消費品專賣店以5.8萬元的優(yōu)惠價格轉(zhuǎn)讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費的開支3 600元后,逐步償還轉(zhuǎn)讓費(不計息).在甲提供的資料中:①這種消費品的進價為每件14元;②該店月銷量Q(百件)與銷售價格P(元)的關(guān)系如圖所示;③每月需各種開支2 000元.
(1)當商品的價格為每件多少元時,月利潤扣除職工最低生活費的余額最大?并求最大余額;
(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)(且)是奇函數(shù).
(1)求常數(shù)的值;
(2)若,試判斷函數(shù)的單調(diào)性,并加以證明;
(3)若,且函數(shù)在區(qū)間上的最小值為,求實數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com