養(yǎng)路處建造圓錐形倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為,高,養(yǎng)路處擬建一個(gè)更大的圓錐形倉庫,以存放更多食鹽,現(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來大(高不變);二是高度增加(底面直徑不變)。
(1)分別計(jì)算按這兩種方案所建的倉庫的體積;
(2)分別計(jì)算按這兩種方案所建的倉庫的表面積(地面無需用材料);
(3)哪個(gè)方案更經(jīng)濟(jì)些?
(1)(2),(3)方案二B比方案一更經(jīng)濟(jì)

試題分析:(1)根據(jù)方案一,則倉庫的底面直徑變成16m,由圓錐的體積公式建立模型.根據(jù)方案二,則倉庫的高變成8m,由圓錐的體積公式建立模型.
(2)根據(jù)方案一,倉庫的底面直徑變成16m,由表面積公式建立模型;根據(jù)方案二,則倉庫的高變成8m,由表面積公式建立模型,
(3)方案更經(jīng)濟(jì)些,在于容量大,用材少,即體積大,表面積小,所以比較V2,V1,S2,S1即可.
試題解析:(1)如果按方案一,倉庫的底面直徑變成,則倉庫的體積

如果按方案二,倉庫的高變成,則倉庫的體積

(2)如果按方案一,倉庫的底面直徑變成,半徑為.
棱錐的母線長為
則倉庫的表面積
如果按方案二,倉庫的高變成.
棱錐的母線長為則倉庫的表面積
(3),方案二B比方案一更經(jīng)濟(jì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)求函數(shù)上的最大值和最小值;
(2)求證:當(dāng)時(shí),函數(shù)的圖像在的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)是實(shí)數(shù),函數(shù)).
(1)求證:函數(shù)不是奇函數(shù);
(2)當(dāng)時(shí),求滿足的取值范圍;
(3)求函數(shù)的值域(用表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,求實(shí)數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),則使函數(shù)有零點(diǎn)的實(shí)數(shù)的取值范圍是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)有且僅有三個(gè)解,則實(shí)數(shù) 的取值范圍是
A.[1,2]B.(-∞,2)C.[1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

菱形ABCD的邊長為,,沿對(duì)角線AC折成如圖所示的四面體,二面角B-AC-D為,M為AC的中點(diǎn),P在線段DM上,記DP=x,PA+PB=y,則函數(shù)y=f(x)的圖象大致為(    )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)P(x,y)為函數(shù)y=x2-1(x>)圖象上一動(dòng)點(diǎn),記m=,則當(dāng)m最小時(shí),點(diǎn)P的坐標(biāo)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,函數(shù)的零點(diǎn)分別為,函數(shù)的零點(diǎn)分別為,則的最小值為(  )
A.1B.C.D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案