統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時的耗油量y(升)關(guān)于行駛速度x(千米/小時)的函數(shù)解析式可以表示為:.已知甲、乙兩地相距100千米.
(I)當(dāng)汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?
(Ⅱ)當(dāng)汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?
(I)17.5;(Ⅱ)80千米/小時,11.25升.
解析試題分析:(I)將代入得到每小時的耗油量,再根據(jù)路程算出行駛時間,從而得到了從甲地到乙地的耗油量;(Ⅱ)設(shè)耗油量為升,通過每小時的耗油量及行駛時間得到的表達(dá)式.再通過求導(dǎo)研究其單調(diào)性,從而得到時的最小值.即得當(dāng)汽車以80千米/小時的速度勻速行駛時,從甲地到乙地耗油最少,最少為11.25升.
試題解析:(I)當(dāng)時,汽車從甲地到乙地行駛了小時,
要耗油(升).
答:當(dāng)汽車以40千米/小時的速度勻速行駛時,從甲地到乙地耗油17.5升.
(II)當(dāng)速度為x千米/小時時,汽車從甲地到乙地行駛了小時,設(shè)耗油量為升,
依題意得,令,得.
當(dāng)x∈(0,80)時,h'(x)<0,h(x)是減函數(shù);
當(dāng)x∈(80,120)時,h'(x)>0,h(x)是增函數(shù).∴當(dāng)x=80時,h(x)取到極小值h(80)=11.25.
因為h(x)在(0,120]上只有一個極值,所以它是最小值.
答:當(dāng)汽車以80千米/小時的速度勻速行駛時,從甲地到乙地耗油最少,最少為11.25升. 13分
考點:1.函數(shù)的單調(diào)性;2.利用導(dǎo)數(shù)研究函數(shù)單調(diào)性;3.函數(shù)的最值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)的定義域為(a為實數(shù)),
(1)當(dāng)時,求函數(shù)的值域。
(2)若函數(shù)在定義域上是減函數(shù),求a的取值范圍
(3)求函數(shù)在上的最大值及最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
命題p:關(guān)于x的不等式,對一切恒成立;命題q:函是增函數(shù).若p或q為真,p且q為假,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1) 當(dāng)時,函數(shù)恒有意義,求實數(shù)a的取值范圍;
(2) 是否存在這樣的實數(shù)a,使得函數(shù)在區(qū)間上為增函數(shù),并且的最大值為1.如果存在,試求出a的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)是定義在上的偶函數(shù),且時,,函數(shù)的值域為集合.
(I)求的值;
(II)設(shè)函數(shù)的定義域為集合,若,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在上的函數(shù)同時滿足以下條件:①函數(shù)在上是減函數(shù),在上是增函數(shù);②是偶函數(shù);③函數(shù)在處的切線與直線垂直.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè),若存在使得,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com