在平面直角坐標(biāo)系中,已知圓和圓.
(1)若直線過(guò)點(diǎn),且被圓截得的弦長(zhǎng)為,求直線的方程;
(2)設(shè)為平面上的點(diǎn),滿足:存在過(guò)點(diǎn)的無(wú)窮多對(duì)互相垂直的直線和,它們分別與圓和圓相交,且直線被圓截得的弦長(zhǎng)與直線被圓截得的弦長(zhǎng)相等,試求所有滿足條件的點(diǎn)的坐標(biāo).
(1)或;(2) .
解析試題分析:(1)涉及到圓的弦長(zhǎng)問(wèn)題,我們一般利用弦心距,弦的一半,相應(yīng)半徑所構(gòu)成的直角三角形,本題中由弦長(zhǎng)為,半徑為2,可求得弦心距為1,此即為圓心到直線的距離,利用點(diǎn)到直線的距離公式,可求得斜率.利用方程思想求時(shí)要注意直線斜率不存在即直線與軸垂直的情形.否則可能漏.(2)由(1)的分析可知直線被圓截得的弦長(zhǎng)與直線被圓截得的弦長(zhǎng)相等可得圓心到直線的距離與圓心到直線距離相等,所以我們可設(shè)點(diǎn)坐標(biāo)為,直線的方程分別為,,利用圓心到直線的距離與圓心到直線距離相等列出關(guān)于的方程,再轉(zhuǎn)化為關(guān)于的方程有無(wú)窮解問(wèn)題,從而得解.
試題解析:(1)設(shè)直線的方程為,即
由垂徑定理得圓心到直線的距離
結(jié)合點(diǎn)到直線的距離公式得
所求直線的方程為或,即或
(2)設(shè)點(diǎn),直線的方程分別為
即
由題意可知圓心到直線的距離等于到直線的距離
即,化簡(jiǎn)得,關(guān)于的方程由無(wú)窮多解,則有
,故.
考點(diǎn):(1)點(diǎn)到直線距離公式;(2)方程解的個(gè)數(shù)問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線l經(jīng)過(guò)點(diǎn)P(3,1),且被兩平行直線l1:x+y+1=0和l2:x+y+6=0截得的線段之長(zhǎng)為5,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)直線,為平面上的動(dòng)點(diǎn),過(guò)點(diǎn)作直線的垂線,垂足為,且.
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)、是軌跡上異于坐標(biāo)原點(diǎn)的不同兩點(diǎn),軌跡在點(diǎn)、處的切線分別為、,且,
、相交于點(diǎn),求點(diǎn)的縱坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
求經(jīng)過(guò)直線的交點(diǎn)M,且滿足下列條件的直線方程:(1)與直線2x+3y+5=0平行; (2)與直線2x+3y+5=0垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)直線AM,BM相交于點(diǎn)M,且
(1)求點(diǎn)M的軌跡的方程;
(2)過(guò)定點(diǎn)(0,)作直線PQ與曲線C交于P,Q兩點(diǎn),求的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
矩形ABCD的對(duì)角線AC、BD相交于點(diǎn)M (2,0),AB邊所在直線的方程為:,若點(diǎn)在直線AD上.
(1)求點(diǎn)A的坐標(biāo)及矩形ABCD外接圓的方程;
(2)過(guò)點(diǎn)的直線與ABCD外接圓相交于A、B兩點(diǎn),若,求直線m的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com