16.某空間幾何體的三視圖(單位:cm)如圖所示,則其體積是6cm3,表面積是20+2$\sqrt{2}$cm2

分析 根據(jù)幾何體的三視圖,得出該幾何體后部為長方體,前部為長方體一半的三棱柱的組合體,結(jié)合圖中數(shù)據(jù)求出它的表面積和體積即可.

解答 解:根據(jù)幾何體的三視圖,得;
該該幾何體后部為長方體,其長和高都為2,寬為1,
表面積為2×2×2+4×1×2=16cm2,體積為1×22=4cm3
前部為長方體一半的三棱柱,其棱長為2,
側(cè)面積是(4+2$\sqrt{2}$)×1=4+2$\sqrt{2}$ cm2,體積為$\frac{1}{2}$×1×22=2cm3
所以幾何體的表面積為16+4+2$\sqrt{2}$=20+2$\sqrt{2}$cm2,
體積為4+2=6cm3
故答案為:6;20+2$\sqrt{2}$.

點評 本題考查的知識點是由三視圖求體積,其中根據(jù)已知的三視圖分析出幾何體的形狀是解答的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

6.對于任意的實數(shù)m∈[0,1],mx2-2x-m≥2,則x的取值范圍是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=sin(ωx+φ)(0<ω<4,|φ|<$\frac{π}{2}$),若f($\frac{π}{6}$)-f($\frac{2π}{3}$)=2,則函數(shù)f(x)的單調(diào)遞增區(qū)間為( 。
A.[$\frac{kπ}{2}$+$\frac{π}{6}$,$\frac{kπ}{2}$+$\frac{5π}{12}$],k∈ZB.[$\frac{kπ}{2}$-$\frac{π}{12}$,$\frac{kπ}{2}$+$\frac{π}{6}$],k∈Z
C.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈ZD.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.點P在直線2x-y+1=0上,O為坐標原點,則|OP|的最小值是(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{1}{5}$C.$\sqrt{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.當x∈R時,x+$\frac{4}{x}$的取值范圍是( 。
A.(-∞,-4]B.(-∞,-4)∪(4,+∞)C.[4,+∞)D.(-∞,-4]∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若sinθ=$\frac{3}{5}$,θ為第二象限角,則sin2θ≡-$\frac{24}{25}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知隨機變量ξ服從正態(tài)分布N(3,4),則E(2ξ+1)與D(2ξ+1)的值分別為( 。
A.13,4B.13,8C.7,8D.7,16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知△ABC內(nèi)角A,B,C的對邊分別是a,b,c.且$\frac{ac}{^{2}-{a}^{2}-{c}^{2}}$=$\frac{sinAcosA}{cos(A+C)}$.
(1)求角A;
(2)當sinB-cos(C+$\frac{π}{12}$)取最大值時,求$\frac{a}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.某大學在自主招生面試環(huán)節(jié)中.七位評委老師為陳小偉,李小明打出了分數(shù),要求統(tǒng)計組、復核組依次打出的分數(shù)進行統(tǒng)計,復核組拿到了有兩處污染的成績單(成績?yōu)?0-100的整數(shù))如表
 考生姓名評委01  評委02 評委03 評委04 評委05 評委06 評委07
 陳小偉 99 70 85 84 8■ 85 81
 李小明 79 9■ 84 84 86 8487 
(1)統(tǒng)計組使用莖葉圖記錄了兩位同學的成績,若評委05給陳小偉打出的分數(shù)為84分,評委02給李小明打出的分數(shù)為91分.請你結(jié)合兩處污染的成績單數(shù)據(jù)完成兩位同學成績的莖葉圖1,并比較兩位同學成績的穩(wěn)定性.
(2)若復合組將考生成績?nèi)サ粢粋最高分和一個最低分,根據(jù)有兩處污染的成績單,你能否判斷出兩位同學平均水平的高低?
(3)該大學用系統(tǒng)抽樣的方法抽取了n名學生的面試成績,制作了如圖2所示的頻率分布直方圖.
①已知圖表中第四小組(即[70,80)內(nèi))的頻數(shù)為15,求n的值;
②請你根據(jù)圖表中的信息估計樣本的眾數(shù),中位數(shù),平均數(shù)(精確到0.01)
參考公式:假設(shè)樣本數(shù)據(jù)是x1,x2,…xn,$\overline{x}$,s分別表示這組數(shù)據(jù)的平均數(shù)和標準差,則:
s=$\sqrt{\frac{({x}_{1}-\overline{x})^{2}+({x}_{2}-\overline{x})^{2}+…+({x}_{n}-\overline{x})^{2}}{n}}$.

查看答案和解析>>

同步練習冊答案