【題目】孝感星河天街購物廣場某營銷部門隨機抽查了100名市民在2017年國慶長假期間購物廣場的消費金額,所得數(shù)據(jù)如表,已知消費金額不超過3千元與超過3千元的人數(shù)比恰為3:2.
(1)試確定, , , 的值,并補全頻率分布直方圖(如圖);
(2)用分層抽樣的方法從消費金額在和的兩個群體中抽取5人進(jìn)行問卷調(diào)查,則各小組應(yīng)抽取幾人?若從這5人中隨機選取2人,則此2人來自同一群體的概率是多少?
【答案】(1)見解析(2)2,3;
【解析】試題分析:(1)根據(jù)人數(shù)總和為100,以及比例關(guān)系列方程組解出, ,再根據(jù)頻率等于頻數(shù)除以總數(shù),得, 的值,最后根據(jù)縱坐標(biāo)等于對應(yīng)概率除以組距描點補全直方圖(2)先根據(jù)分層抽樣得各小組人數(shù),再利用枚舉法得總事件數(shù),從中抽出來自同一群體事件數(shù),最后根據(jù)古典概型概率公式求概率
試題解析:解:(1)根據(jù)題意,有解得
∴, .
補全頻率分布直方圖如圖所示:
(2)根據(jù)題意,消費金額在內(nèi)的人數(shù)為(人),記為: , ,
消費金額在內(nèi)的人數(shù)為(人),記為:1,2,3.
則從這5人中隨機選取2人的選法為: , , , , , , , , , 共10種,
記2人來自同一群體的事件為,則中含有, , , 共4種,
∴.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市政府為了節(jié)約生活用電,計劃在本市試行居民生活用電定額管理,即確定一個居民月用電量標(biāo)準(zhǔn),用電量不超過的部分按平價收費,超出的部分按議價收費.為此,政府調(diào)查了100戶居民的月平均用電量(單位:度),以, , , , , , 分組的頻率分布直方圖如圖所示.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)如果當(dāng)?shù)卣M?/span>左右的居民每月的用電量不超出標(biāo)準(zhǔn),根據(jù)樣本估計總體的思想,你認(rèn)為月用電量標(biāo)準(zhǔn)應(yīng)該定為多少合理?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域為D的函數(shù)y=f(x),如果存在區(qū)間[m,n]D,同時滿足:
①f(x)在[m,n]內(nèi)是單調(diào)函數(shù);
②當(dāng)定義域是[m,n]時,f(x)的值域也是[m,n].
則稱[m,n]是該函數(shù)的“和諧區(qū)間”.
(1)證明:[0,1]是函數(shù)y=f(x)=x2的一個“和諧區(qū)間”.
(2)求證:函數(shù) 不存在“和諧區(qū)間”.
(3)已知:函數(shù) (a∈R,a≠0)有“和諧區(qū)間”[m,n],當(dāng)a變化時,求出n﹣m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)討論函數(shù)在上的單調(diào)性;
(II)設(shè)函數(shù)存在兩個極值點,并記作,若,求正數(shù)的取值范圍;
(III)求證:當(dāng)=1時, (其中e為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線 與橢圓 有且只有一個公共點
.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若直線 交C于A,B兩點,且PA⊥PB,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,三棱柱ABC-A1B1Cl中,M,N分別為CC1,A1B1的中點.CA⊥CB1,CA=CB1,BA=BC=BB1.
(I)求證:直線MN//平面CAB1;
(II)求證:直線BA1⊥平面CAB1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在x=1處的切線與直線平行。
(Ⅰ)求a的值并討論函數(shù)y=f(x)在上的單調(diào)性。
(Ⅱ)若函數(shù) (為常數(shù))有兩個零點,
(1)求m的取值范圍;
(2)求證: 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓G:,過點作圓的切線交橢圓G于A、B兩點.
(1)求橢圓G的焦點坐標(biāo)和離心率;
(2)將表示為m的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得10萬元到1 000萬元的投資收益.現(xiàn)準(zhǔn)備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金不超過投資收益的20%.
(1)請分析函數(shù)y= +1是否符合公司要求的獎勵函數(shù)模型,并說明原因;
(2)若該公司采用函數(shù)模型y= 作為獎勵函數(shù)模型,試確定最小的正整數(shù)a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com