甲乙兩人進(jìn)行圍棋比賽行約定每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一人比對(duì)方多2分或打滿6局時(shí)停止.設(shè)甲在每局中獲勝的概率為P(P
1
2
),且各局勝負(fù)相互獨(dú)立.已知第二局比賽結(jié)束時(shí)比賽停止的概率為
5
9
.若圖為統(tǒng)計(jì)這次比賽的局?jǐn)?shù)n和甲、乙的總得分?jǐn)?shù)S、T的程序框圖.其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.
(Ⅰ)在圖中,第一、第二兩個(gè)判斷框應(yīng)分別填寫(xiě)什么條件?
(Ⅱ)求P的值;
(Ⅲ)求比賽到第4局時(shí)停止的概率P4,以及比賽到第6局時(shí)停止的概率p6
(Ⅰ)根據(jù)規(guī)則,比賽進(jìn)行到有一人比對(duì)方多2分或打滿6局時(shí)停止,
而這2個(gè)條件框是用來(lái)終止運(yùn)算的,
故程序框圖中的第一個(gè)條件框應(yīng)填M=2,第二個(gè)應(yīng)填n=6.
注意:答案不唯一.如:第一個(gè)條件框填M>1,第二個(gè)條件框填n>5,或者第一、第二條件互換,都可以.
(Ⅱ)依題意,當(dāng)甲連勝2局或乙連勝2局時(shí),第二局比賽結(jié)束時(shí)比賽結(jié)束.
故有 P2+(1-P)2=
5
9
,解得 P=
2
3
,或P=
1
3

再由P>
1
2
,可得P=
2
3

(Ⅲ)設(shè)每?jī)删直荣悶橐惠,則由題意可得,一輪結(jié)束時(shí),比賽終止的概率為
5
9
,
若比賽到第4局時(shí)停止,說(shuō)明第一輪比賽中甲乙二人各的一分,此時(shí),
該輪比賽的結(jié)果對(duì)下一輪比賽是否停止沒(méi)有影響.
故比賽到第4局時(shí)停止的概率P4 =(1-
5
9
)×
5
9
=
20
81
,
比賽到第6局時(shí)停止的概率p6=(1-
5
9
)×(1-
5
9
)×1=
16
81
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某家電專賣店在五一期間設(shè)計(jì)一項(xiàng)有獎(jiǎng)促銷活動(dòng),每購(gòu)買一臺(tái)電視,即可通過(guò)電腦產(chǎn)生一組3個(gè)數(shù)的隨機(jī)數(shù)組,根據(jù)下表兌獎(jiǎng):
獎(jiǎng)次
一等獎(jiǎng)
二等獎(jiǎng)
三等獎(jiǎng)
隨機(jī)數(shù)組的特征
3個(gè)1或3個(gè)0
只有2個(gè)1或2個(gè)0
只有1個(gè)1或1個(gè)0
資金(單位:元)
5m
2m
m
 
商家為了了解計(jì)劃的可行性,估計(jì)獎(jiǎng)金數(shù),進(jìn)行了隨機(jī)模擬試驗(yàn),并產(chǎn)生了20個(gè)隨機(jī)數(shù)組,試驗(yàn)結(jié)果如下:
247,235,145,124,754,353,296,065,379,118,520,378,218,953,254,368,027,111,358,279.
(1)在以上模擬的20組數(shù)中,隨機(jī)抽取3組數(shù),至少有1組獲獎(jiǎng)的概率;
(2)根據(jù)以上模擬試驗(yàn)的結(jié)果,將頻率視為概率:
(。┤艋顒(dòng)期間某單位購(gòu)買四臺(tái)電視,求恰好有兩臺(tái)獲獎(jiǎng)的概率;
(ⅱ)若本次活動(dòng)平均每臺(tái)電視的獎(jiǎng)金不超過(guò)260元,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
某公務(wù)員去開(kāi)會(huì),他乘火車、輪船、汽車、飛機(jī)去的概率分別是0.3、0.2、0.1、0.4,求:
(1)他乘火車或乘飛機(jī)去的概率;
(2)他不乘輪船去的概率;
(3)如果他乘交通工具去的概率為0.5,請(qǐng)問(wèn)他有可能是乘何種交通工具去的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)甲袋裝有m個(gè)白球,n個(gè)黑球,乙袋裝有m個(gè)黑球,n個(gè)白球,從甲、乙袋中各摸一球.設(shè)事件A:“兩球相同”,事件B:“兩球異色”,試比較P(A) 與P(B)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)為應(yīng)對(duì)金融危機(jī),刺激消費(fèi),某市給市民發(fā)放面額為100元的旅游消費(fèi)卷,由抽樣調(diào)查預(yù)計(jì)老、中、青三類市民持有這種消費(fèi)卷到某旅游景點(diǎn)消費(fèi)額及其概率如下表:

200元
300元
400元
500元
老年
0.4
0.3
0.2
0.1
中年
0.3
0.4
0.2
0.1
青年
0.3
0.3
0.2
0.2
某天恰好有持有這種消費(fèi)卷的老年人、中年人、青年人各一人到該旅游景點(diǎn),(1)求這三人恰有兩人消費(fèi)額不少于300元的概率;(2)求這三人消費(fèi)總額大于或等于1300元的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

有10件產(chǎn)品,其中有2件次品,從中隨機(jī)抽取3件,求:
(1)其中恰有1件次品的概率;
(2)至少有一件次品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

口袋內(nèi)有一些大小相同的紅球,白球和黑球,從中任摸一球摸出紅球的概率是0.3,摸出黑球的概率是0.5,那么摸出白球的概率是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

經(jīng)統(tǒng)計(jì)某儲(chǔ)蓄所一個(gè)窗口等候的人數(shù)及相應(yīng)的概率如下:
排隊(duì)人數(shù)012345人及5人以上
概率t0.30.160.30.10.04
(1)t是多少?
(2)至少3人排隊(duì)等候的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如果本次數(shù)學(xué)考試中,甲某及格的概率為0.4,乙某及格的概率為0.8,且這兩個(gè)人的考試結(jié)果互不影響.則這次考試中甲、乙至少有1個(gè)人不及格的概率是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案