已知三個球的半徑,滿足,則它們的表面積,,,滿足的等量關系是___________.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在長方體ABCD—A1B1C1D1中,AB=2,BB1=BC=1,E為D1C1的中點,連結ED,EC,EB和DB.

(1)求證:ED⊥平面EBC;
(2)求三棱錐E-DBC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,正方形ADEF與梯形ABCD所在平面互相垂直,AD⊥CD,AB//CD,AB=AD=,點M在線段EC上且不與E、C垂合.
(1)當點M是EC中點時,求證:BM//平面ADEF;
(2)當平面BDM與平面ABF所成銳二面角的余弦值為時,求三棱錐M—BDE的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在平行四邊形中,,將沿折起到的位置.
(1)求證:平面;
(2)當取何值時,三棱錐的體積取最大值?并求此時三棱錐的側面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2013•湖北)如圖,某地質隊自水平地面A,B,C三處垂直向地下鉆探,自A點向下鉆到A1處發(fā)現(xiàn)礦藏,再繼續(xù)下鉆到A2處后下面已無礦,從而得到在A處正下方的礦層厚度為A1A2=d1.同樣可得在B,C處正下方的礦層厚度分別為B1B2=d2,C1C2=d3,且d1<d2<d3.過AB,AC的中點M,N且與直線AA2平行的平面截多面體A1B1C1﹣A2B2C2所得的截面DEFG為該多面體的一個中截面,其面積記為S
(1)證明:中截面DEFG是梯形;
(2)在△ABC中,記BC=a,BC邊上的高為h,面積為S.在估測三角形ABC區(qū)域內正下方的礦藏儲量(即多面體A1B1C1﹣A2B2C2的體積V)時,可用近似公式V=S﹣h來估算.已知V=(d1+d2+d3)S,試判斷V與V的大小關系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知平面,在內有4個點,在內有6個點,以這些點為頂點,最多可作     個三棱錐,在這些三棱錐中最多可以有     個不同的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

若一個球的體積為,則它的表面積為________________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

若球、表面積之比,則它們的半徑之比     

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

直三棱柱的各頂點都在同一球面上,若,,則此球的表面積等于         。

查看答案和解析>>

同步練習冊答案