3.云南省2014年全省高中男生身高統(tǒng)計(jì)調(diào)查顯示:全省男生的身高服從正態(tài)分布N(170.5.16).高三年級(jí)男生中隨機(jī)抽取50名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于175.5cm和187.5cm之間,將測(cè)量結(jié)果按如下方式分成6組:第 一組[157.5,162.5),第二組[162.5,167.5),…第 6 組(182.5,187.5],按上述分組方法得到的頻率分布直方圖如圖所示.
(1)試評(píng)估我校高三年級(jí)男生在全省高中男生中的平均身高狀況;
(2)求這50名男生身高在177.5cm以上(含177.5cm)的人數(shù);
(3)在這50名男生身高在177.5cm.以上(含177.5cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全省前130名的人數(shù)記為ζ,求ζ的數(shù)學(xué)期望.
參考數(shù)據(jù):若ζ〜N(μ,σ2
P(μ-σ<ξ≤μ+σ)=0.6826,
p(μ-2σ<ξ≤μ+2σ)=0.9544
Pμ-3σ<ξ≤μ+3σ)=0.9974.

分析 (1)計(jì)算平均身高用組中值×頻率,即可得到結(jié)論;
(2)先理解頻率分布直方圖橫縱軸表示的意義,橫軸表示身高,縱軸表示頻數(shù),即每組中包含個(gè)體的個(gè)數(shù);根據(jù)頻數(shù)分布直方圖,了解數(shù)據(jù)的分布情況,知道每段所占的比例,從而求出這50名男生身高在177.5cm以上(含177.5cm)的人數(shù);
(3)先根據(jù)正態(tài)分布的規(guī)律求出全市前130名的身高在182.5cm以上的50人中的人數(shù),確定ξ的可能取值,求出其概率,即可得到ξ的分布列與期望.

解答 解:(1)根據(jù)頻率分布直方圖,得我校高三年級(jí)男生平均身高為$\overline{x}$=160×0.02×5+165×0.04×5+170×0.06×5
+175×0.04×5+180×0.02×5+185×0.02×5=171.5,
∴高于全市的平均值170.5;(4分)
(2)由頻率分布直方圖知,后兩組頻率為0.2,
∴人數(shù)為0.2×50=10,
即這50名男生身高在177.5cm以上(含177.5 cm)的人數(shù)為10人;…(6分)
(3)∵P(170.5-3×4<ξ≤170.5+3×4)=0.9974,
∴P(ξ≥182.5)=$\frac{1-0.9974}{2}$=0.0013,
∴0.0013×100 000=130,
全省前130名的身高在182.5 cm以上,這50人中182.5 cm以上的有5人;
∴隨機(jī)變量ξ可取0,1,2,于是
P(ξ=0)=$\frac{{C}_{5}^{2}}{{C}_{10}^{2}}$=$\frac{2}{9}$,P(ξ=1)=$\frac{{C}_{5}^{1}{C}_{5}^{1}}{{C}_{10}^{2}}$=$\frac{5}{9}$,P(ξ=2)=$\frac{{C}_{5}^{2}}{{C}_{10}^{2}}$=$\frac{2}{9}$,
∴Eξ=0×$\frac{2}{9}$+1×$\frac{5}{9}$+2×$\frac{2}{9}$=1.…(12分)

點(diǎn)評(píng) 本題考查了頻率分布直方圖的應(yīng)用問題,也考查了離散型隨機(jī)變量的期望與方差的計(jì)算問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知tanα=-2,則$\frac{1}{4}$sin2α+$\frac{2}{5}$cos2α=$\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓C:(x-a)2+(y-2)2=4,其中a∈(0,+∞),直線l1:x-y+3=0,被圓C截得的弦長(zhǎng)為2$\sqrt{2}$.
(1)求a的值;
(2)求過點(diǎn)(3,5)與圓C相切的切線方程;
(3)直線l2過P(0,1)點(diǎn)交圓C于AB兩點(diǎn),求AB中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知平面α⊥平面β,α∩β=l,若直線a,b滿足a∥α,b⊥β,則(  )
A.a∥lB.a∥bC.b⊥lD.a⊥b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率是$\frac{\sqrt{7}}{2}$,則E的漸近線方程為( 。
A.y=±xB.y=±$\frac{\sqrt{2}}{2}$xC.y=±$\frac{\sqrt{3}}{2}$xD.y=±2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)=$\frac{ax-2}{x-1}$的圖象關(guān)于點(diǎn)(1,1)對(duì)稱,則實(shí)數(shù)a=1 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.下列關(guān)于命題的說法正確的是(4)(請(qǐng)將所有正確命題的序號(hào)都填上)
(1)命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”;
(2)“x=-1”是“x2-5x-6=0”的必要不充分條件;
(3)命題“a,b都是有理數(shù)”的否定是“a,b都不是有理數(shù)”;
(4)命題“若x=y,則sinx=siny”的逆否命題為真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{ax}{x+b}$滿足:f(1)=1,f(-2)=4.
(1)求a,b的值,并探究是否存在常數(shù)c,使得對(duì)函數(shù)f(x)在定義域內(nèi)的任意x,都有f(x)+f(c-x)=4成立;
(2)當(dāng)x∈[1,2]時(shí),不等式f(x)≤$\frac{2m}{(x+1)|x-m|}$恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知直線l的極坐標(biāo)方程是ρcosθ-ρsinθ-1=0,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,曲線C的參數(shù)方程是$\left\{{\begin{array}{l}{x=cosα-1}\\{y=sinα}\end{array}}\right.$(α為參數(shù)).
(Ⅰ)求直線l的直角坐標(biāo)方程和曲線C的普通方程;
(Ⅱ)若直線l與x、y軸交于M、N兩點(diǎn),點(diǎn)P為曲線C上任一點(diǎn).求△PMN的面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案