分析 (1)甲、乙獲得2000元獎(jiǎng)金的概率有兩種情況:①第一關(guān)甲答對(duì),第二關(guān)甲、乙都答錯(cuò);②第一關(guān)甲答錯(cuò),乙答對(duì),第二關(guān)甲答錯(cuò),可求得結(jié)論;
(2)確定變量的取值,求出相應(yīng)的概率,即可求隨機(jī)變量X的分布列及數(shù)學(xué)期望.
解答 解:(1)甲、乙獲得2000元獎(jiǎng)金的概率有兩種情況:①第一關(guān)甲答對(duì),第二關(guān)甲、乙都答錯(cuò);②第一關(guān)甲答錯(cuò),乙答對(duì),第二關(guān)甲答錯(cuò).
故其概率為:P=$\frac{3}{4}×\frac{1}{4}×\frac{1}{2}+\frac{1}{4}×\frac{1}{2}×\frac{1}{4}$=$\frac{1}{8}$…(4分)
(2)根據(jù)題意,X=0,2000,4000,6000,
P(X=0)=$\frac{1}{4}×\frac{1}{2}$=$\frac{1}{8}$;…(6分)
P(X=2000)=$\frac{1}{8}$;
P(X=4000)=$(\frac{3}{4})^{2}×\frac{1}{4}×\frac{1}{2}+\frac{3}{4}×\frac{1}{4}×\frac{1}{2}×{C}_{2}^{1}×\frac{1}{4}$=$\frac{15}{128}$;…(8分)
P(X=6000)=$(\frac{3}{4})^{3}+(\frac{3}{4})^{2}×\frac{1}{4}×\frac{1}{2}×{C}_{3}^{1}$=$\frac{81}{128}$…(10分)
隨機(jī)變量X的分布列為
X | 0 | 2000 | 4000 | 6000 |
P | $\frac{1}{8}$ | $\frac{1}{8}$ | $\frac{15}{128}$ | $\frac{81}{128}$ |
點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列與數(shù)學(xué)期望,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 96種 | B. | 78種 | C. | 72種 | D. | 36種 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com