A. | 單位向量都相等 | B. | 對于任意$\overrightarrow{a}$,$\overrightarrow$,必有|$\overrightarrow{a}$+$\overrightarrow$|≤|$\overrightarrow{a}$|+|$\overrightarrow$| | ||
C. | 若$\overrightarrow{a}$∥$\overrightarrow$,則一定存在實(shí)數(shù)λ,使$\overrightarrow{a}$=λ$\overrightarrow$ | D. | 若$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$=0或$\overrightarrow$=0 |
分析 根據(jù)平面向量的基本概念,對選項(xiàng)中的命題判斷正誤即可.
解答 解:對于A,單位向量的模長相等,方向不一定相同,不一定是相等向量,A錯誤;
對于B,任意$\overrightarrow{a}$,$\overrightarrow$,根據(jù)向量加法的幾何意義知|$\overrightarrow{a}$+$\overrightarrow$|≤|$\overrightarrow{a}$|+|$\overrightarrow$|,
當(dāng)且僅當(dāng)$\overrightarrow{a}$、$\overrightarrow$共線同向時取“=”,B正確;
對于C,若$\overrightarrow{a}$∥$\overrightarrow$,則不一定存在實(shí)數(shù)λ,使$\overrightarrow{a}$=λ$\overrightarrow$,
如$\overrightarrow{a}$≠$\overrightarrow{0}$,且$\overrightarrow$=$\overrightarrow{0}$時,命題不成立,C錯誤;
對于D,若$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow$=$\overrightarrow{0}$或$\overrightarrow{a}$⊥$\overrightarrow$,∴D錯誤.
故選:B.
點(diǎn)評 本題考查了平面向量的基本概念與應(yīng)用問題,是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2或8 | B. | 2 | C. | 8 | D. | 4或8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | 2$\sqrt{3}$ | C. | $\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$ | D. | $\sqrt{3}$或2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com