【題目】如圖,四邊形是平行四邊形,平面,,,,,的中點(diǎn).

1)求證:平面;

2)求證:平面平面;

3)求多面體的體積.

【答案】1)詳見解析;(2)詳見解析;(3.

【解析】試題分析:(1)證明線面平行可證明直線平行于平面內(nèi)的直線,本題中只需證明;(2)證明面面垂直可證明其中一個(gè)平面經(jīng)過另外一個(gè)平面的垂線,本題中只需證明平面中的平面;(3)不規(guī)則多面體的體積求解時(shí)將其分割為柱體和椎體分別求體積

試題解析:(1)證明:如圖,取的中點(diǎn),連接,,

中,的中點(diǎn),

,又,,即四邊形是平行四邊形,.又平面,平面,平面

2)證明:在中,,取中點(diǎn),連,,

,又,,

,又平面,平面,,,

平面.又平面,平面平面

3)解:連,并延長(zhǎng)交,連

分別為的中點(diǎn),,中點(diǎn),,,

多面體為三棱柱,體積為,且四邊形為平行四邊形,,平面平面,四棱錐的體積為

多面體的體積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,已知投資1萬(wàn)元時(shí)兩類產(chǎn)品的收益分別為0125萬(wàn)元和05萬(wàn)元(如圖)

(1)分別寫出兩種產(chǎn)品的收益與投資的函數(shù)關(guān)系;

(2)該家庭現(xiàn)有20萬(wàn)元資金,全部用于理財(cái)投資,問:怎樣分配資金能使投資獲得最大利潤(rùn),其最大收

益為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,,點(diǎn)在底面上的射影為線段的中點(diǎn)

(1)若為棱的中點(diǎn),求證:平面;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題關(guān)于的不等式的解集是,命題函數(shù)的定義域?yàn)?/span>.

(1)如果真命題,求實(shí)數(shù)的取值范圍;

(2)如果真命題, 假命題, 實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,的中點(diǎn),.

1)已知,求證:平面;

2)已知分別是的中點(diǎn),求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線(m+2)x-y-3=0與直線(3m-2)x-y+1=0平行,則實(shí)數(shù)m的值是( )
A.1
B.2
C.3
D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩種商品,經(jīng)銷這兩種商品所能獲得的利潤(rùn)分別是萬(wàn)元和萬(wàn)元,它們與投入資金萬(wàn)元的關(guān)系為:,今有3萬(wàn)元資金投入經(jīng)營(yíng)這兩種商品.問:對(duì)乙種商品的資金為多少萬(wàn)元時(shí),能獲得最大利潤(rùn)?最大利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】集合P={x|y=x2},集合Q={y|y=x2},則P與Q的關(guān)系為( )
A.PQ
B.QP
C.P=Q
D.以上都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1的最小正周期;

2在區(qū)間上的最大值和最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案