如圖所示,PA與圓O相切于A,直線PO交圓O于B,C兩點(diǎn),AD⊥BC,垂足為D,且D是OC的中點(diǎn),若PA=6,則PC=
 
考點(diǎn):與圓有關(guān)的比例線段
專題:選作題,立體幾何
分析:連接OA,則OA⊥PA,利用射影定理、切割線定理,即可求出PC.
解答: 解:連接OA,則OA⊥PA,
∴PA2=PD•PO,
∵PA=6,D是OC的中點(diǎn),
∴(PC+
1
2
OC)•(PC+OC)=36,①
∵PA2=PC•PB,
∴PC•(PC+2•OC)=36,②
由①②可得PC=2
3

故答案為:PC=2
3
點(diǎn)評(píng):本題考查射影定理、切割線定理,考查學(xué)生的計(jì)算能力,正確運(yùn)用射影定理、切割線定理是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-2ax+2=0與直線y=x相切,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若a1=-2,S4=10,則公差d=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,使極坐標(biāo)系的單位長(zhǎng)度與直角坐標(biāo)系的單位長(zhǎng)度相同.已知直線l的參數(shù)方程為
x=-2+3t
y=
3
t
(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=4cosθ,則直線l與曲線C的交點(diǎn)個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過隨機(jī)抽樣獲得100輛汽車經(jīng)過某一雷達(dá)測(cè)速地區(qū)的時(shí)速(單位:km/h),并繪制成如圖所示的頻率分布直方圖,其中這100輛汽車時(shí)速的范圍是[30,80],數(shù)據(jù)分組為[30,40),[40,50),[50,60),[60,70),[70,80].設(shè)時(shí)速達(dá)到或超過60km/h的汽車有x輛,則x等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,CD是圓O的切線,切點(diǎn)為C,點(diǎn)B在圓O上,BC=2
3
,∠BCD=60°,則圓O的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x
1-2x
-
x
2
( 。
A、是偶函數(shù),在(-∞,0)上是增函數(shù)
B、是偶函數(shù),在(-∞,0)上是減函數(shù)
C、是奇函數(shù),在(-∞,0)上是增函數(shù)
D、是奇函數(shù),在(-∞,0)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P為△ABC所在平面內(nèi)一點(diǎn),當(dāng)
PA
+
PB
=
PC
時(shí),點(diǎn)P位于△ABC的( 。
A、AB邊上B、BC邊上
C、內(nèi)部D、外部

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
2i
1+i
,
.
z
是z的共軛復(fù)數(shù),則z+
.
z
=( 。
A、4B、-4C、2D、-2

查看答案和解析>>

同步練習(xí)冊(cè)答案