已知直線的參數(shù)方程為 (為參數(shù)),曲線的極坐標(biāo)方程為 
(1)求曲線的普通方程;
(2)求直線被曲線截得的弦長(zhǎng).

(1)(2)

解析試題分析:(1)應(yīng)用余弦的二倍角公式將曲線C的極坐標(biāo)方程化為含的式子,然后應(yīng)用公式即可求出曲線C的普通方程;(2)法一:利用直線的標(biāo)準(zhǔn)參數(shù)方程中參數(shù)的幾何意義來求弦長(zhǎng),選將直線參數(shù)方程化為標(biāo)準(zhǔn)參數(shù)方程,然后代入曲線C的普通方程,得到關(guān)于參數(shù)t的一個(gè)一元二次方程,由韋達(dá)定理可求出就是所求弦長(zhǎng);注意直線標(biāo)準(zhǔn)參數(shù)方程中參數(shù)的兩個(gè)系數(shù)的平方各等于1;法二:將直線的參數(shù)方程化為普通方程,聯(lián)立曲線C的普通方程,消元得到一個(gè)一元二次方程,再用韋達(dá)定理及弦長(zhǎng)公式就可就出所求的弦長(zhǎng).
試題解析:(1)由曲線C:,化成普通方程為:
(2)方法一:把直線參數(shù)方程化為標(biāo)準(zhǔn)參數(shù)方程為:
把②代入①得:,設(shè)其兩根為,由韋達(dá)定理得:
從而弦長(zhǎng)為|t1-t2|==
方法二:把直線的參數(shù)方程化為普通方程為:代入.設(shè)直線與曲線C交于,則;所以
考點(diǎn):1.極坐標(biāo)與參數(shù)方程;2.弦長(zhǎng)的求法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

(極坐標(biāo)與參數(shù)方程選做題) 在極坐標(biāo)系中,曲線相交于A、B點(diǎn),則線段|AB|=___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知某圓的極坐標(biāo)方程是,求:
(1)求圓的普通方程和一個(gè)參數(shù)方程;
(2)圓上所有點(diǎn)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,已知點(diǎn),曲線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為
(Ⅰ)判斷點(diǎn)與直線的位置關(guān)系,說明理由;
(Ⅱ)設(shè)直線與曲線的兩個(gè)交點(diǎn)為、,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線的極坐標(biāo)方程為,圓M的參數(shù)方程為。求:(1)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求圓M上的點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

極坐標(biāo)與參數(shù)方程: 已知點(diǎn)P是曲線上一點(diǎn),O為原點(diǎn).若直線OP的傾斜角為,求點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為  (a>b>0,為參數(shù)),以Ο為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2是圓心在極軸上且經(jīng)過極點(diǎn)的圓,已知曲線C1上的點(diǎn)M 對(duì)應(yīng)的參數(shù)= ,與曲線C2交于點(diǎn)D 
(1)求曲線C1,C2的方程;
(2)A(ρ1,θ),Β(ρ2,θ+)是曲線C1上的兩點(diǎn),求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,設(shè)動(dòng)點(diǎn)P,Q都在曲線Cθ為參數(shù))上,且這兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為θαθ=2α(0<α<2π),設(shè)PQ的中點(diǎn)M與定點(diǎn)A(1,0)間的距離為d,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

在極坐標(biāo)系中,以(,)為圓心,為半徑的圓的方程為____________

查看答案和解析>>

同步練習(xí)冊(cè)答案