已知橢圓方程為
x2
16
+
y2
9
=1,
(1)求該橢圓的長(zhǎng)軸和短軸、頂點(diǎn)的坐標(biāo);
(2)若該橢圓焦點(diǎn)為F1、F2,直線L經(jīng)過(guò)點(diǎn)F1且與橢圓相交于M,N兩點(diǎn),則求△MNF2的周長(zhǎng).
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)橢圓方程為
x2
16
+
y2
9
=1,故a=4,b=3,可得該橢圓的長(zhǎng)軸和短軸、頂點(diǎn)的坐標(biāo);
(2)利用橢圓的定義可知|F1M|+|F2M|和|F1N|+|F2N|的值,進(jìn)而把四段距離相加即可求得答案.
解答: 解:(1)橢圓方程為
x2
16
+
y2
9
=1,故a=4,b=3,
∴橢圓的長(zhǎng)軸長(zhǎng)為8和短軸長(zhǎng)為6、頂點(diǎn)的坐標(biāo)為(±4,0)、(0,±3);
(2)利用橢圓的定義可知,|F1M|+|F2M|=2a=8,|F1N|+|F2N|=2a=8
∴△MNF2的周長(zhǎng)為|F1M|+|F2M|+F1N|+|F2N|=8+8=16
點(diǎn)評(píng):本題主要考查了橢圓的簡(jiǎn)單性質(zhì).解題的關(guān)鍵是利用橢圓的第一定義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1
-1
|x|dx=( 。
A、0
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不過(guò)原點(diǎn)的直線l 與y=x2交于A、B兩點(diǎn),若使得以AB為直徑的圓過(guò)原點(diǎn),則直線l必過(guò)點(diǎn)( 。
A、(0,1)
B、(1,0)
C、(0,2)
D、(1,0),(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式:
(1)x2-2(a+1)x+1<0(a∈R);
(2)ax2-(a-8)x+1>0(a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線y2=4x的頂點(diǎn)作射線OA,OB與拋物線交于A,B,若
OA
OB
=2,求證:直線AB過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:-
π
2
<x<0,sinx+cosx=
1
5

(Ⅰ)求sinx-cosx的值;
(Ⅱ)求
cos(π-x)cos(
π
2
-x)tan(-π+x)
sin2(
π
2
+x)-sin2(π+x)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在二項(xiàng)式(2x-3y)9的展開(kāi)式中,求:
(1)二項(xiàng)式系數(shù)之和; 
(2)各項(xiàng)系數(shù)之和; 
(3)所有奇數(shù)項(xiàng)系數(shù)之和; 
(4)系數(shù)絕對(duì)值的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知2a2+4a-3=0,3b2-4b-2=0,求
1
a
+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左,右焦點(diǎn)分別是F1,F(xiàn)2,離心率e=
2
2
,P為橢圓上任一點(diǎn),且△PF1F2的最大面積為1.
(1)求橢圓C的方程;
(2)設(shè)斜率為k(k≠0)的直線l交橢圓C于A,B兩點(diǎn),且以AB為直徑的圓恒過(guò)原點(diǎn)O,若實(shí)數(shù)m滿足條件
AO
AB
=
m
tan∠OAB
,求m的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案