A. | $-\frac{10}{3}$<λ≤$\frac{9}{4}$ | B. | $-\frac{10}{3}$<λ<$\frac{9}{4}$ | C. | $-\frac{9}{4}$<λ≤$\frac{10}{3}$ | D. | $-\frac{9}{4}$<λ<$\frac{10}{3}$ |
分析 求出an=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),運(yùn)用裂項(xiàng)相消求和,可得前n項(xiàng)和為Sn,判斷可得{Sn}為遞增數(shù)列,求得最值,討論n為奇數(shù)和偶數(shù),由恒成立問題解法,求得λ的范圍,即可得到所求范圍.
解答 解:an=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
前n項(xiàng)和為Sn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n-1}$-$\frac{1}{n+1}$+$\frac{1}{n}$-$\frac{1}{n+2}$)
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)=$\frac{3}{4}$-$\frac{1}{2}$($\frac{1}{n+1}$+$\frac{1}{n+2}$),
可得{Sn}為遞增數(shù)列,且有S1取得最小值$\frac{1}{3}$;
且Sn<$\frac{3}{4}$,
當(dāng)n為偶數(shù)時(shí),(-1)nλ<3+(-1)n+1Sn對(duì)任意正整數(shù)n恒成立,
即為λ<3-Sn對(duì)任意正整數(shù)n恒成立,
由3-Sn>3-$\frac{3}{4}$=$\frac{9}{4}$,
可得λ≤$\frac{9}{4}$①
當(dāng)n為奇數(shù)時(shí),(-1)nλ<3+(-1)n+1Sn對(duì)任意正整數(shù)n恒成立,
即為-λ<3+Sn對(duì)任意正整數(shù)n恒成立,
由3+Sn≥3+S1=3+$\frac{1}{3}$=$\frac{10}{3}$,
可得-λ<$\frac{10}{3}$,即λ>-$\frac{10}{3}$②
由①②解得$-\frac{10}{3}$<λ≤$\frac{9}{4}$.
故選:A.
點(diǎn)評(píng) 本題考查數(shù)列的求和方法:裂項(xiàng)相消求和,考查不等式恒成立問題的解法,注意運(yùn)用分類討論的思想方法,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com