(本小題滿分12分)
如圖6,已知正三棱柱ABC—A1B1C1中,D是BC的中點(diǎn),AA1=AB=1。
(1)求證:平面AB1D⊥平面B1BCC1;
(2)求證:A1C//平面AB1D;
(3)求二面角B—AB1—D的正切值。
(1)證明見解析。
(2)證明見解析。
(3)二面角B—AB1—D的正切值為

解法一:
證明:(1)因?yàn)锽1B⊥平面ABC,AD平面ABC,
所以AD⊥B1B   (1分)
因?yàn)镈為正△ABC中BC的中點(diǎn),
所以AD⊥BD   (2分)
又B1B∩BC=B,
所以AD⊥平面B1BCC1  (3分)
又AD平面AB1D,故平面AB1D⊥平面B1BCC1   (4分)
(2)連接A1B,交AB1于E,連DE   (5分)

因?yàn)辄c(diǎn)E為矩形A1ABB1對角線的交點(diǎn),所以E為AB1的中點(diǎn)  (6分)
又D為BC的中點(diǎn),所以DE為△A1BC的中位線,
所以DE//A1C   (7分)
又DE平面AB1D,所以A1C//平面AB1D   (8分)
(3)解:過D作DF⊥AB于F,過F作FG⊥AB1于G,連接DG。
因?yàn)槠矫鍭1ABB1⊥平面ABC,DF⊥AB,所以DF⊥平面A1ABB1。
又AB1平面A1ABB1,所以AB1⊥DF。
又FG⊥AB1,所以AB1⊥平面DFG,所以AB1⊥DG。  (9分)
又AB1⊥FG,所以∠DGF為二面角B—AB1—D的平面角。  (10分)
因?yàn)锳A1=AB=1,
所以在正△ABC中,
  (11分)
所以在   (12分)
解法二:
解:建立如圖所示的直角坐標(biāo)系,依題意有:


(1)證明:由,

又BC∩⊥BB1=B,所以AD⊥平面B1BCC1。  (4分)
又AD平面AB1D,所以平面AB1D⊥B1BCC1   (5分)
(2)證明:連接A1B,交AB1于E,連DE,
因?yàn)辄c(diǎn)E為正方形A1ABB1對角線的交點(diǎn),所以E為AB1的中點(diǎn),
   (6分)

又DE平面AB1D,所以A1C//平面AB1D   (8分)
(3)解:設(shè)平面ABB1的一個法向量為
   (9分)
設(shè)平面AB1D的一個法向量為
   (10分)
所以    (11分)
所以,
依圖可得二面角B—AB1—D的正切值為   (12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐的底面是矩形,
底面,PBC邊的中點(diǎn),SB
平面ABCD所成的角為45°,且AD=2,SA=1.
(1)求證:平面SAP;
(2)求二面角ASDP的大小.          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,四棱錐S-ABCD的底面是正方形,SD⊥平面ABCD.
SD=2,,E是SD上的點(diǎn).(Ⅰ)求證:AC⊥BE;
(Ⅱ)求二面角C—AS—D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題12分)
圖甲是一個幾何體的表面展開圖,圖乙是棱長為的正方體。
(Ⅰ)若沿圖甲中的虛線將四個三角形折疊起來,使點(diǎn)、、重合,則可以圍成怎樣的幾何體?請求出此幾何體的體積;
(Ⅱ)需要多少個(I)的幾何體才能拼成一個圖乙中的正方體?請按圖乙中所標(biāo)字母寫出這幾個幾何體的名稱;
(Ⅲ)在圖乙中,點(diǎn)為棱上的動點(diǎn),試判斷與平面是否垂直,并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方體中,分別是的中點(diǎn).
 
(1)證明;     (2)求所成的角;
(3)證明面;(4)的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知三棱錐P—ABC中,PC⊥底面ABC,,,二面角P-AB-C為,D、F分別為AC、PC的中點(diǎn),DE⊥AP于E.
(Ⅰ)求證:AP⊥平面BDE;                
(Ⅱ)求平面BEF與平面BAC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

四面體ABCD中,共頂點(diǎn)A的三條棱兩兩相互垂直,且其長分別為,若四面體的四個頂點(diǎn)同在一個球面上,則這個球的表面積為    。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體--,E、F分別是、的中點(diǎn),p是上的動點(diǎn)(包括端點(diǎn)),過E、D、P作正方體的截面,若截面為四邊形,則P的軌跡是
A.線段   B、線段    C、線段和一點(diǎn)     D、線段和一點(diǎn)C。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

關(guān)于直線a、b,以及平面M、N,給出下列命題:
①若a//M, b//M,則a//b      ②若a//M, b⊥M,則ab
③若a//b, b//M,則a//M      ④若a⊥M, a//N,則M⊥N
其中正確的命題的個數(shù)為(   )
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案