已知點、,若動點滿足.
(1)求動點的軌跡曲線的方程;
(2)在曲線上求一點,使點到直線:的距離最。
(1);(2).
解析試題分析:本題考查計算能力和參數(shù)方程在求圓錐曲線最值中的應(yīng)用.(1)由向量的坐標運算,模公式可列出式子,化簡求解;(2)將橢圓方程化為參數(shù)方程,由點到直線的距離公式,轉(zhuǎn)化為求三角函數(shù)的最值.
試題解析:(1)設(shè)點坐標為,則,,,.
因為,所以,化簡得.
所以動點的軌跡為.
(2)點在上,設(shè)點坐標為,.
記到直線的距離為
,
當時有最小值,
此時點坐標為.
考點:1、平面向量的坐標運算;2、橢圓方程及其性質(zhì);3、點到直線的距離公式;4、橢圓的參數(shù)方程;5、三角恒等變換與三角函數(shù)運算.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:,
(1)若橢圓的長軸長為4,離心率為,求橢圓的標準方程;
(2)在(1)的條件下,設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(為坐標原點),求直線的斜率的取值范圍;
(3)過原點任意作兩條互相垂直的直線與橢圓:相交于四點,設(shè)原點到四邊形的一邊距離為,試求時滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓()右頂點到右焦點的距離為,短軸長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過左焦點的直線與橢圓分別交于、兩點,若線段的長為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在坐標原點,右準線為,離心率為.若直線與橢圓交于不同的兩點、,以線段為直徑作圓.
(1)求橢圓的標準方程;
(2)若圓與軸相切,求圓被直線截得的線段長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
知橢圓的左右焦點為F1,F(xiàn)2,離心率為,以線段F1 F2為直徑的圓的面積為, (1)求橢圓的方程;(2) 設(shè)直線l過橢圓的右焦點F2(l不垂直坐標軸),且與橢圓交于A、B兩點,線段AB的垂直平分線交x軸于點M(m,0),試求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標系中,已知曲線上任意一點到點的距離與到直線的距離相等.
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè),是軸上的兩點,過點分別作軸的垂線,與曲線分別交于點,直線與x軸交于點,這樣就稱確定了.同樣,可由確定了.現(xiàn)已知,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓的上、下頂點分別為,點在橢圓上,且異于點,直線與直線分別交于點,
(Ⅰ)設(shè)直線的斜率分別為,求證:為定值;
(Ⅱ)求線段的長的最小值;
(Ⅲ)當點運動時,以為直徑的圓是否經(jīng)過某定點?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,曲線上任意一點分別與點、連線的斜率的乘積為.
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)直線與軸、軸分別交于、兩點,若曲線與直線沒有公共點,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線與雙曲線有公共焦點,點是曲線在第一象限的交點,且.
(1)求雙曲線的方程;
(2)以雙曲線的另一焦點為圓心的圓與直線相切,圓:.過點作互相垂直且分別與圓、圓相交的直線和,設(shè)被圓截得的弦長為,被圓截得的弦長為,問:是否為定值?如果是,請求出這個定值;如果不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com