【題目】已知函數(shù)f(x)=ax3﹣ax﹣xlnx.其中a∈R.
(Ⅰ)若,證明:f(x)≥0;
(Ⅱ)若xe1﹣x≥1﹣f(x)在x∈(1,+∞)上恒成立,求a的取值范圍.
【答案】(Ⅰ)詳見(jiàn)解析;(Ⅱ)[).
【解析】
(Ⅰ)先對(duì)函數(shù)求導(dǎo),然后結(jié)合導(dǎo)數(shù)可求函數(shù)的單調(diào)性,進(jìn)而可求的范圍,即可得證;
(Ⅱ)由已知代入整理可得在上恒成立,構(gòu)造函數(shù),,按照、討論,結(jié)合導(dǎo)數(shù)分別分析函數(shù)的特征性質(zhì),即可得解.
(Ⅰ)證明:函數(shù)的定義域,
當(dāng)時(shí),,
令,則,
當(dāng)時(shí),,函數(shù)單調(diào)遞減;
時(shí),,函數(shù)單調(diào)遞增;
故,
又,所以;
(Ⅱ)若在上恒成立,
則在上恒成立,
即在上恒成立,
令,,
令,則,則,
所以,可得,
∵,
(i)當(dāng)時(shí),,在上單調(diào)遞減,故,
此時(shí)不成立;
(ii)當(dāng)時(shí),由可得,,
當(dāng)即時(shí),在上單調(diào)遞減,在上單調(diào)遞增,
∴,則在上,不成立;
當(dāng)即時(shí),在上單調(diào)遞增,
令,
則,
令,
∵,
故在上單調(diào)遞增,,
則,符合題意;
綜上,a的范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓的離心率為,直線被橢圓截得的線段長(zhǎng)為.
(1)求橢圓的方程;
(2)過(guò)原點(diǎn)的直線與橢圓交于兩點(diǎn)(不是橢圓的頂點(diǎn)),點(diǎn)在橢圓上,且,直線與軸軸分別交于兩點(diǎn).
①設(shè)直線斜率分別為,證明存在常數(shù)使得,并求出的值;
②求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, 平面, , , , , 為線段上的點(diǎn).
(1)證明: 平面;
(2)若是的中點(diǎn),求與平面所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)的圖象上存在兩點(diǎn),使得是以為直角頂點(diǎn)的直角三角形(其中為坐標(biāo)原點(diǎn)),且斜邊的中點(diǎn)恰好在軸上,則實(shí)數(shù)的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)當(dāng)時(shí),證明:函數(shù)有兩個(gè)零點(diǎn);
(Ⅲ)若函數(shù)有兩個(gè)不同的極值點(diǎn),記作,且,證明(為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在貫徹中共中央、國(guó)務(wù)院關(guān)于精準(zhǔn)扶貧政策的過(guò)程中,某單位在某市定點(diǎn)幫扶甲、乙兩村各50戶貧困戶為了做到精準(zhǔn)幫扶,工作組對(duì)這100戶村民的年收入情況、勞動(dòng)能力情況、子女受教育情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標(biāo)x,將指標(biāo)x按照分成五組,得到如圖所示的頻率分布直方圖.
規(guī)定若,則認(rèn)定該戶為“絕對(duì)貧困戶”,否則認(rèn)定該戶為“相對(duì)貧困戶”,且當(dāng)時(shí),認(rèn)定該戶為“低收入戶”;當(dāng)時(shí),認(rèn)定該戶為“亟待幫助戶”,已知此次調(diào)查中甲村的“絕對(duì)貧困戶”占甲村貧困戶的24%.
(1)完成下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為絕對(duì)貧困戶數(shù)與村落有關(guān);
甲村 | 乙村 | 總計(jì) | |
絕對(duì)貧困戶 | |||
相對(duì)貧困戶 | |||
總計(jì) |
(2)若兩村“低收入戶”中乙村“低收入戶”占比為,兩村“亟待幫助戶”中乙村“亟待幫助戶”占比為,且乙村貧困指標(biāo)在上的戶數(shù)成等差數(shù)列,試估計(jì)乙村貧困指標(biāo)x的平均值.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)節(jié)高三學(xué)生學(xué)習(xí)壓力,某校高三年級(jí)舉行了拔河比賽,在賽前三位老師對(duì)前三名進(jìn)行了預(yù)測(cè),于是有了以下對(duì)話:老師甲:“7班男生比較壯,7班肯定得第一名”.老師乙:“我覺(jué)得14班比15班強(qiáng),14班名次會(huì)比15班靠前”.老師丙:“我覺(jué)得7班能贏15班”.最后老師丁去觀看完了比賽,回來(lái)后說(shuō):“確實(shí)是這三個(gè)班得了前三名,且無(wú)并列,但是你們?nèi)酥兄挥幸蝗祟A(yù)測(cè)準(zhǔn)確”.那么,獲得一、二、三名的班級(jí)依次為( )
A.7班、14班、15班B.14班、7班、15班
C.14班、15班、7班D.15班、14班、7班
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓 的左右焦點(diǎn)分別為的、,離心率為;過(guò)拋物線焦點(diǎn)的直線交拋物線于、兩點(diǎn),當(dāng)時(shí), 點(diǎn)在軸上的射影為。連結(jié)并延長(zhǎng)分別交于、兩點(diǎn),連接; 與的面積分別記為, ,設(shè).
(Ⅰ)求橢圓和拋物線的方程;
(Ⅱ)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù) (k為常數(shù))
(1)當(dāng)時(shí),求函數(shù)的最值;
(2)若,討論函數(shù)的單調(diào)性
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com