(理)設
是兩條不同的直線,
是一個平面,則下列命題錯誤的是
.
①若
,則
;②若
,則
;
③若
,則
;④若
,則
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分10分)
已知四棱錐P—ABCD的底面為直角梯形,AB//DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中點。
(I)求AC與PB所
成角的余弦值;
(II)求面AMC與面BMC所成二面角的余弦值的大小。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
直三棱柱ABO-A
1B
1O
1中,∠AOB=90°,D為AB的中點,AO=BO=BB
1=2.
①求證:BO
1⊥AB
1;
②求證:BO
1∥平面OA
1D;
③求三棱錐B—A
1OD的體積。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分10分)如圖,正方體
中,
求證:(1)
(2)平面
平面
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在三棱錐
中
底面
點
,
分別在棱
上,且
(Ⅰ)求證:
平面
;
(Ⅱ)當
為
的中點時,求
與平面
所成的角的大小;
(Ⅲ)是否存在點
使得二面角
為直二面角?并說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
四棱錐
S—
ABCD中,底面
ABCD為平行四邊形,側面
SBC⊥底面
ABCD,已知
∠
ABC = 45°
AB=2,
BC=
,
SA=
SB =
(Ⅰ)證明
SA⊥
BC;
(Ⅱ)求直線
SD與平面
SAB所成角的大小.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
如圖,在三棱柱
中,每個側面均為正方形,
為底邊
的中點,
為側棱
的中點,
與
的交點為
.
(Ⅰ)求證:
∥平面
;
(Ⅱ)求證:
平面
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,在棱長為1的正方體
中,
分別為棱
的中點,
是側面
的中心,則空間四邊形
在正方體的六個面上的射影圖形面積的最大值是(。
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
下列命題中不正確的是(其中
l、
m表示直線,
α、
β、
γ表示平面)
A.若l⊥m,l⊥α,m⊥β,則α⊥β |
B.若α⊥γ,β∥γ,則α⊥β |
C.若l⊥m,lα,mβ,則α⊥β |
D.若l∥m,l⊥α,mβ,則α⊥β |
查看答案和解析>>