【題目】已知,則對(duì)任意非零實(shí)數(shù),方程 的解集不可能為( )
A. B. C. D.
【答案】D
【解析】
根據(jù)函數(shù)f(x)的對(duì)稱(chēng)性,因?yàn)?/span>的解應(yīng)滿足y1=,y2=,進(jìn)而可得到的根,應(yīng)關(guān)于對(duì)稱(chēng)軸x對(duì)稱(chēng),對(duì)于D中4個(gè)數(shù)無(wú)論如何組合都找不到滿足條件的對(duì)稱(chēng)軸,故解集不可能是D.
∵,關(guān)于直線x對(duì)稱(chēng).
令方程的解為f1(x),f2(x)
則必有f1(x)=y1=,f2(x)=y2=
那么從圖象上看,y=y1,y=y2是一條平行于x軸的直線
它們與f(x)有交點(diǎn),由于對(duì)稱(chēng)性,則方程y1=的兩個(gè)解x1,x2要關(guān)于直線x對(duì)稱(chēng),也就是說(shuō)x1+x2
同理方程y2=的兩個(gè)解x3,x4也要關(guān)于直線x對(duì)稱(chēng)
那就得到x3+x4,
若方程有4個(gè)解,則必然滿足x1+x2 x3+x4
而在D中,找不到這樣的組合使得對(duì)稱(chēng)軸一致,也就是說(shuō)無(wú)論怎么分組,
都沒(méi)辦法使得其中兩個(gè)的和等于另外兩個(gè)的和.
故答案D不可能
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的左、右焦點(diǎn)分別為,右頂點(diǎn)為A,上頂點(diǎn)為B,且滿足向量 。
(1)若,求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)為橢圓上異于頂點(diǎn)的點(diǎn),以線段PB為直徑的圓經(jīng)過(guò)F1,問(wèn)是否存在過(guò)F2的直線與該圓相切?若存在,求出其斜率;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),
(1)求函數(shù)在上的值域
(2)設(shè),若方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為實(shí)數(shù)常數(shù))
(1)當(dāng)時(shí),求函數(shù)在上的單調(diào)區(qū)間;
(2)當(dāng)時(shí),成立,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】眾所周知,城市公交車(chē)的數(shù)量太多會(huì)造成資源的浪費(fèi),太少又難以滿足乘客的需求,為此,某市公交公司在某站臺(tái)的50名候車(chē)乘客中隨機(jī)抽取10名,統(tǒng)計(jì)了他們的候車(chē)時(shí)間(單位:分鐘),得到下表.
候車(chē)時(shí)間 | 人數(shù) |
1 | |
4 | |
2 | |
2 | |
1 |
(1)估計(jì)這10名乘客的平均候車(chē)時(shí)間(同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替);
(2)估計(jì)這50名乘客的候車(chē)時(shí)間少于10分鐘的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)說(shuō)法,其中正確的是( )
A.命題“若,則”的否命題是“若,則”
B.“”是“雙曲線的離心率大于”的充要條件
C.命題“,”的否定是“,”
D.命題“在中,若,則是銳角三角形”的逆否命題是假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知數(shù)列為等差數(shù)列,其前n項(xiàng)和為.若,試分別比較與、與的大小關(guān)系.
(2)已知數(shù)列為等差數(shù)列,的前n項(xiàng)和為.證明:若存在正整數(shù)k,使,則.
(3)在等比數(shù)列中,設(shè)的前n項(xiàng)乘積,類(lèi)比(2)的結(jié)論,寫(xiě)出一個(gè)與有關(guān)的類(lèi)似的真命題,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正四面體ABCD的體積為1,O為其中心,正四面體EFGH與正四面體ABCD關(guān)于點(diǎn)O對(duì)稱(chēng),則這兩個(gè)正四面體的公共部分的體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線:,過(guò)拋物線焦點(diǎn)且與軸垂直的直線與拋物線相交于、兩點(diǎn),且的周長(zhǎng)為.
(1)求拋物線的方程;
(2)若過(guò)焦點(diǎn)且斜率為1的直線與拋物線相交于、兩點(diǎn),過(guò)點(diǎn)、分別作拋物線的切線、,切線與相交于點(diǎn),求:的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com