橢圓
的焦點坐標(biāo)是______________.
試題分析:橢圓
轉(zhuǎn)化為
所以焦點在y軸上,焦點為
點評:要求橢圓的焦點坐標(biāo),先要將其方程整理為標(biāo)準(zhǔn)方程,這樣才能找到
,從而確定焦點位置及
的值
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知雙曲線
,點
、
分別為雙曲線
的左、右焦點,動點
在
軸上方.
(1)若點
的坐標(biāo)為
是雙曲線的一條漸近線上的點,求以
、
為焦點且經(jīng)過點
的橢圓的方程;
(2)若∠
,求△
的外接圓的方程;
(3)若在給定直線
上任取一點
,從點
向(2)中圓引一條切線,切點為
. 問是否存在一個定點
,恒有
?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)直線
的斜率為2且過拋物線
的焦點F,又與
軸交于點A,
為坐標(biāo)原點,若
的面積為4,則拋物線的方程為:
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知雙曲線
的左右焦點為
,P為雙曲線右支上
的任意一點,若
的最小值為8a,則雙曲線的離心率的取值范圍是
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)直線
與拋物線
交于
兩點.
(1)求線段
的長;(2)若拋物線
的焦點為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知直線
經(jīng)過拋物線
的焦點F,且與拋物線相交于A、B兩點.
(1)若
,求點A的坐標(biāo);
(2)若直線
的傾斜角為
,求線段AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在平面直角坐標(biāo)系
O
中,直線
與拋物線
=2
相交于
A、
B兩點。
(1)求證:命題“如果直線
過點
T(3,0),那么
=3”是真命題;
(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓的一焦點與兩頂點為等邊三角形的三個頂點,則橢圓的長軸長是短軸長的 ( )
查看答案和解析>>