給出以下五個命題:
①對于任意的a>0,b>0,都有algb=blga成立;
②直線y=x•tanα+b的傾斜角等于α;
③已知異面直線a,b成60°角,則過空間一點P且與a,b均成60°角的直線有且只有兩條;
④在平面內(nèi),如果將單位向量的起點移到同一個點,那么終點的軌跡是一個半徑為1的圓;
⑤已知函數(shù)y=f(x),若存在常數(shù)M>0,使|f(x)|<M•|x|對定義域內(nèi)的任意x均成立,則稱f(x)為“倍約束函數(shù)”.對于函數(shù)f(x)=
x2-1
-1,該函數(shù)是倍約束函數(shù).
其中真命題的序號是
 
考點:命題的真假判斷與應用
專題:綜合題,簡易邏輯
分析:①對algb=blga兩邊取對數(shù),得出正確結(jié)論;
②中,明確直線的斜率與傾斜角的關(guān)系,從而判定命題不成立;
③由已知中異面直線a與b所成的角為60°,設(shè)P為空間一點,過P分別作直線a,b的平行線,得到∠APB=60°,過P點作出直線a,b相交所成角的兩條角平分線,進而根據(jù)三余弦定理即可得到答案;
④由單位向量的模長是1以及圓的定義,判定命題是否正確;
⑤函數(shù)f(x)=
x2-1
-1<•|x|對定義域內(nèi)的任意x均成立.
解答: 解:①中,∵a>0,b>0,若algb=blga,則lgalgb=lgblga,即lgb•lga=lga•lgb成立,∴命題正確;
②中,直線y=x•tanα+b的斜率是k=tanα,當α∈[0,π)且α≠
π
2
時,傾斜角等于α,否則,命題不成立;
③把異面直線a,b平移到相交,使交點為P,此時∠APB=60°,過P點作直線a,b相交所成角的兩條角平分線c,d,如圖所示:若存在其它直線與a,b都成60°角,則直線在該平面上的射影為c或d
∵d與a,b都成60°角,則在平面上射影為d的直線只有直線d一條,
∵c與a,b都成30°角,由三余弦定理,當直線與c夾角的余弦為
3
3
時,滿足條件,這樣的直線共有2條,
故過空間一點且與a和b都成60°角的直線共有3條,∴③不正確;
④∵單位向量的模長是1,∴在平面內(nèi)將單位向量的起點移到同一個點,終點的軌跡是一個半徑為1的圓,命題正確;
⑤函數(shù)f(x)=
x2-1
-1<•|x|對定義域內(nèi)的任意x均成立,∴函數(shù)是倍約束函數(shù),正確
故答案為:①④⑤.
點評:本題通過命題的判定考查了指數(shù)、對數(shù)的運算,直線的斜率與傾斜角,圓、函數(shù)等知識,是綜合題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(x-
1
x
6的展開式中x2的系數(shù)為
 
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個樣本容量為10的樣本數(shù)據(jù),它們組成一個公差不為0的等差數(shù)列{an},若a3=8,且a1,a3,a7成等比數(shù)列,則此樣本的平均數(shù)和中位數(shù)分別是
 
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)k∈R,若1≤x≤2時恒有x3-3x2+2≤(1-k)x+1≤0,則k的取值集合是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式x<
1
x
的解集是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列各式中值等于
1
2
的是( 。
A、sin15°cos15°
B、
tan22.5°
1-tan222.5°
C、cos2
π
12
-sin2
π
12
D、
1+cos
π
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)z=3+
3+4i
4-3i
,則
.
z
等于( 。
A、3+iB、3-i
C、4+iD、4-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,程序框圖(算法流程圖)的輸出值s=( 。
A、-1B、0C、1D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C上任意一點P到點F(0,1)的距離比它到直線l:y=-2的距離小1,一個圓的圓心為A(0,4),過點A的直線與曲線C交于D,E兩點.
(Ⅰ)求曲線C的方程;
(Ⅱ)當線段DE長度最短時,曲線C過D點的切線與圓A相切的弦長為
8
5
5
,求此時圓A的方程.

查看答案和解析>>

同步練習冊答案