18.已知數(shù)列{an} 滿足an+1-an=2,n∈N*,且a3=3,則a1=-1,其前n 項(xiàng)和Sn=n2-2n.

分析 推導(dǎo)出數(shù)列{an} 是公差d=2的等差數(shù)列,由此能求出首項(xiàng)和前n項(xiàng)和.

解答 解:∵數(shù)列{an} 滿足an+1-an=2,n∈N*,且a3=3,
∴數(shù)列{an} 是公差d=2的等差數(shù)列,
∴a3=a1+2d=a1+4=3,
解得a1=-1,
∴Sn=$n{a}_{1}+\frac{n(n-1)}{2}d$=-1+$\frac{n(n-1)}{2}×2$=n2-2n.
故答案為:-1,n2-2n.

點(diǎn)評(píng) 本題考查數(shù)列的首項(xiàng)和前n項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要 認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)程序,輸出的結(jié)果是( 。
A.1234B.2017C.2258D.722

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}-(x+3)(x-1),x≤a\\{2^x}-2\;\;\;\;\;\;\;\;\;\;\;\;,x>a.\end{array}\right.$
①若a=1,則f(x)的零點(diǎn)個(gè)數(shù)為2;
②若f(x)恰有1個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(-∞,-3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線的傾斜角為$\frac{π}{6}$,則雙曲線的漸近線的方程為y=±$\frac{\sqrt{3}}{3}$;該雙曲線的離心率為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的是(  )
A.$y={(\frac{1}{2})^x}$B.y=-x2C.y=log2xD.y=|x|+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)$f(x)=\frac{{sin2x+2{{cos}^2}x}}{cosx}$
(Ⅰ)求f(x) 的定義域及$f(\frac{π}{4})$ 的值;
(Ⅱ)求f(x) 在$(0,\frac{π}{2})$ 上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.一個(gè)四棱錐的三視圖如圖所示,這個(gè)四棱錐的體積為( 。
A.6B.8C.12D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)$f(x)=\frac{x^2}{2e}-ax,g(x)=lnx-ax,a∈R$.
(1)解關(guān)于x(x∈R)的不等式f(x)≤0;
(2)證明:f(x)≥g(x);
(3)是否存在常數(shù)a,b,使得f(x)≥ax+b≥g(x)對(duì)任意的x>0恒成立?若存在,求出a,b的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=lnx+ax,g(x)=ax2+2x,其中a為實(shí)數(shù),e為自然對(duì)數(shù)的底數(shù).
(1)若a=1,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)y=f(x)的極大值為-2,求實(shí)數(shù)a的值;
(3)若a<0,且對(duì)任意的x∈[1,e],f(x)≤g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案