【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿(mǎn)足an=2Sn+1(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=(2n﹣1)an , 求數(shù)列{bn}的前n項(xiàng)和Tn .
【答案】解:(Ⅰ)當(dāng)n=1時(shí),a1=2S1+1=2a1+1,解得a1=﹣1.
當(dāng)n≥2時(shí),an=2Sn+1,an﹣1=2Sn﹣1+1,兩式相減得an﹣an﹣1=2an , 化簡(jiǎn)得an=﹣an﹣1 ,
所以數(shù)列{an}是首項(xiàng)為﹣1,公比為﹣1的等比數(shù)列,
可得 .
(Ⅱ)由(Ⅰ)得 ,
當(dāng)n為偶數(shù)時(shí),bn﹣1+bn=2, ;
當(dāng)n為奇數(shù)時(shí),n+1為偶數(shù),Tn=Tn+1﹣bn+1=(n+1)﹣(2n+1)=﹣n.
所以數(shù)列{bn}的前n項(xiàng)和
【解析】(Ⅰ)當(dāng)n=1時(shí),a1=2S1+1=2a1+1,解得a1 . 當(dāng)n≥2時(shí),an=2Sn+1,an﹣1=2Sn﹣1+1,兩式相減得an﹣an﹣1=2an , 利用等比數(shù)列的通項(xiàng)公式即可得出.(Ⅱ)由(Ⅰ)得 ,對(duì)n分類(lèi)討論:當(dāng)n為偶數(shù)時(shí),bn﹣1+bn=2,可得Tn;當(dāng)n為奇數(shù)時(shí),n+1為偶數(shù),Tn=Tn+1﹣bn+1 .
【考點(diǎn)精析】關(guān)于本題考查的數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式,需要了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=aex﹣2x﹣2a,且a∈[1,2],設(shè)函數(shù)f(x)在區(qū)間[0,ln2]上的最小值為m,則m的取值范圍是( )
A.[﹣2,﹣2ln2]
B.[﹣2,﹣ ]
C.[﹣2ln2,﹣1]
D.[﹣1,﹣ ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,曲線(xiàn)C1的參數(shù)方程為 (θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,與直角坐標(biāo)系xoy取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為ρ=2cosθ﹣4sinθ.
(1)化曲線(xiàn)C1 , C2的方程為普通方程,并說(shuō)明它們分別表示什么曲線(xiàn);
(2)設(shè)曲線(xiàn)C2與x軸的一個(gè)交點(diǎn)的坐標(biāo)為P(m,0)(m>0),經(jīng)過(guò)點(diǎn)P作斜率為1的直線(xiàn),l交曲線(xiàn)C2于A,B兩點(diǎn),求線(xiàn)段AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=sin(2x+ )(x∈[0, ]),若方程f(x)=a恰好有三個(gè)根,分別為x1 , x2 , x3(x1<x2<x3),則x1+x2+x3的取值范圍是( )
A.[ , )
B.[ , )
C.[ , )
D.[ , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2lnx﹣3x2﹣11x.
(1)求曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(2)若關(guān)于x的不等式f(x)≤(a﹣3)x2+(2a﹣13)x﹣2恒成,求整數(shù)a的最小值;
(3)若正實(shí)數(shù)x1 , x2滿(mǎn)足f(x1)+f(x2)+4(x +x )+12(x1+x2)=4,證明:x1+x2≥2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線(xiàn)l的參數(shù)方程為 (t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2sinθ.
(Ⅰ)判斷直線(xiàn)l與圓C的交點(diǎn)個(gè)數(shù);
(Ⅱ)若圓C與直線(xiàn)l交于A,B兩點(diǎn),求線(xiàn)段AB的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平面ADC∥平面A1B1C1 , B為線(xiàn)段AD的中點(diǎn),△ABC≈△A1B1C1 , 四邊形ABB1A1為正方形,平面AA1C1C丄平面ADB1A1 , A1C1=A1A,∠C1A1A= ,M為棱A1C1的中點(diǎn).
(I)若N為線(xiàn)段DC1上的點(diǎn),且直線(xiàn)MN∥平面ADB1A1 , 試確定點(diǎn)N的位置;
(Ⅱ)求平面MAD與平面CC1D所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某程序框圖如圖所示,該程序運(yùn)行后若輸出S的值是2,則判斷框內(nèi)可填寫(xiě)( )
A.i≤2015?
B.i≤2016?
C.i≤2017?
D.i≤2018?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著人口老齡化的到來(lái),我國(guó)的勞動(dòng)力人口在不斷減少,”延遲退休“已經(jīng)成為人們?cè)絹?lái)越關(guān)注的話(huà)題,為了解公眾對(duì)“延遲退休”的態(tài)度,某校課外研究性學(xué)習(xí)小組在某社區(qū)隨機(jī)抽取了50人進(jìn)行調(diào)查,將調(diào)查情況進(jìn)行整理后制成下表:
年齡 | [20,25) | [25,30) | [30,35) | [35,40) | [40,45) |
人數(shù) | 4 | 5 | 8 | 5 | 3 |
年齡 | [45,50) | [50,55) | [55,60) | [60,65) | [65,70) |
人數(shù) | 6 | 7 | 3 | 5 | 4 |
經(jīng)調(diào)查年齡在[25,30),[55,60)的被調(diào)查者中贊成人數(shù)分別是3人和2人,現(xiàn)從這兩組的被調(diào)查者中各隨機(jī)選取2人,進(jìn)行跟蹤調(diào)查.
(Ⅰ)求年齡在[25,30)的被調(diào)查者中選取的2人都贊成“延遲退休”的概率;
(Ⅱ)若選中的4人中,不贊成“延遲退休”的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com