12.已知函數(shù)y=f(x)的定義域為R,當(dāng)x<0時,f(x)>1,且對任意的實數(shù)x,y∈R,等式f(x)f(y)=f(x+y)恒成立.若數(shù)列{an}滿足a1=f(0),且f(an+1)=$\frac{1}{f(-2-{a}_{n})}$(n∈N*),則a2018的值為( 。
A.4033B.4034C.4035D.4036

分析 根據(jù)題意,底數(shù)小于1的指數(shù)函數(shù)符合題中條件,不妨令f(x)=($\frac{1}{2}$)x,求得a1=f(0)=1,再由f(an+1)=$\frac{1}{f(-2-{a}_{n})}$(n∈N*),得an+1=an+2,從而求得正確的結(jié)果

解答 解:根據(jù)題意,不妨設(shè)f(x)=($\frac{1}{2}$)x,(其中x∈R),
則a1=f(0)=1;
∵f(an+1)=$\frac{1}{f(-2-{a}_{n})}$(n∈N*),
($\frac{1}{2}$)an+1=$\frac{1}{(\frac{1}{2})^{-2-{a}_{n}}}$=$(\frac{1}{2})^{2+{a}_{n}}$,
∴an+1=an+2;
∴數(shù)列{an}是以1為首項,以2為公差的等差數(shù)列;
∴an=2n-1,
∴a2018=4035.
故選:C

點(diǎn)評 本題考查了數(shù)列與函數(shù)的綜合運(yùn)用,本題中的條件滿足底數(shù)小于1的指數(shù)函數(shù),用特殊值法來解答,以便提高解題效率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=2cosx($\sqrt{3}$sinx+cosx)-1.
(Ⅰ)求函數(shù)f (x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值;
(Ⅱ)若f (x0)=$\frac{6}{5}$,x0∈[$\frac{π}{4}$,$\frac{π}{2}$],求cos2x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某超市在開業(yè)一個月(30天)內(nèi)日接待顧客人數(shù)(萬人)與時間t (天)的函數(shù)關(guān)系近似滿足f(t)=1+$\frac{4}{t}$,顧客人均消費(fèi)額(元)與時間t(天)的函數(shù)關(guān)系近似滿足g(t)=84-|t-20|.
(1)求該超市日銷售額y (萬元)與時間t (天)的函數(shù)關(guān)系式;
(2)求該超市日銷售額的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)a,b是平面α外的兩條不同直線,則下列判斷中正確的是③(填序號).
①若a∥b,a∥α,則b∥α;
②若a∥α,b∥α,則a∥b;
③若a∥b,b與α相交,則a與α也相交;
④若a與b異面,a∥α,則b∥α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某店銷售進(jìn)價為2元/件的產(chǎn)品A,假設(shè)該店產(chǎn)品A每日的銷售量y(單位:千件)與銷售價格x(單位:元/件)滿足的關(guān)系式y(tǒng)=$\frac{10}{x-2}$+4(x-6)2,其中2<x<6.
(1)若產(chǎn)品A銷售價格為4元/件,求該店每日銷售產(chǎn)品A所獲得的利潤;
(2)試確定產(chǎn)品A銷售價格x的值,使該店每日銷售產(chǎn)品A所獲得的利潤最大.(保留1位小數(shù)點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知一組正數(shù)x1,x2,x3,x4的方差為s2=$\frac{1}{4}$(x12+x22+x32+x42-16),則數(shù)據(jù)x1+3,x2+3,x3+3,x4+3的平均數(shù)為( 。
A.7B.6C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.阿基米德在《論球與圓柱》一書中推導(dǎo)球的體積公式時,得到一個等價的三角恒等式sin$\frac{π}{2n}$+sin$\frac{2π}{2n}$+…+$\frac{(2n-1)π}{2n}$=$\frac{1}{{tan\frac{π}{4n}}}$,若在兩邊同乘以$\frac{π}{2n}$,并令n→+∞,則左邊=$\lim_{x→∞}$$\sum_{i=1}^{2n}$$\frac{π}{2n}$sin$\frac{iπ}{2n}}$=$\int_0^π$sinxdx.因此阿基米德實際上獲得定積分$\int_0^π$sinxdx的等價結(jié)果.則$\int_0^π$sinxdx=( 。
A.-2B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{3}{|x-a|},}&{x≠a}\\{a,}&{x=a}\end{array}\right.$,若函數(shù)y=f(x)-4有3個零點(diǎn),則a的值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)a,b,c為實數(shù),“ac=b2”是“a,b,c成等比數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案