8.已知拋物線y2=2px(p>0),過點(diǎn)(m,0)作一直線交拋物線于A(x1,y1),B(x1,y1)兩點(diǎn),若kOA•kOB=-2,則m的值為(  )
A.$\frac{p}{2}$B.pC.2pD.$\frac{3p}{2}$

分析 由題意,設(shè)直線方程為x=ky+m,代入拋物線y2=2px(p>0),可得y2-2kpy-2pm=0,利用韋達(dá)定理,結(jié)合kOA•kOB=-2,2x1x2+y1y2=0,即可得出結(jié)論.

解答 解:由題意,設(shè)直線方程為x=ky+m,
代入拋物線y2=2px(p>0),可得y2-2kpy-2pm=0,
y1y2=-2pm,x1x2=(ky1+m)(ky2+m)=m2,
∴2x1x2+y1y2=2m2-2pm,
∵kOA•kOB=-2,
∴2x1x2+y1y2=0,
∴2m2-2pm=0,
∴m=p,
故選:B.

點(diǎn)評(píng) 本題考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},則集合A∩B中元素的個(gè)數(shù)為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.命題:p:?x0∈R,x${\;}_{0}^{2}$+2x0+5<0,它的否定¬p?x0∈R,x${\;}_{0}^{2}$+2x0+5≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.為了了解學(xué)生的體能情況,抽取了某學(xué)校同年級(jí)部分學(xué)生作為樣本進(jìn)行跳繩測(cè)試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖如圖所示,已知圖中從左到右前三個(gè)小組的頻率分別是0.1,0.3,0.4,第四小組的頻數(shù)為10.
(1)求樣本容量n
(2)根據(jù)樣本頻率分布直方圖,估計(jì)學(xué)生跳繩次數(shù)的中位數(shù)(保留整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.(x-2y)6展開式中二項(xiàng)式系數(shù)最大的項(xiàng)的系數(shù)為-160(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|x+1|+|x-4|,x∈R
(1)若函數(shù)f(x)為常值函數(shù),求x的取值范圍;
(2)若不等式a2-2a<f(x),對(duì)?x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.我國古代數(shù)學(xué)家利用“牟合方蓋”(如圖甲)找到了球體體積的計(jì)算方法.它是由兩個(gè)圓柱分別從縱橫兩個(gè)方向嵌入一個(gè)正方體時(shí)兩圓柱公共部分形成的幾何體.圖乙所示的幾何體是可以形成“牟合方蓋”的一種模型,其直觀圖如圖丙,圖中四邊形是為體現(xiàn)其直觀性所作的輔助線.當(dāng)其正視圖和側(cè)視圖完全相同時(shí),它的正視圖和俯視圖分別可能是( 。
A.a,bB.a,dC.c,bD.c,d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.直線x=1的極坐標(biāo)方程是(  )
A.ρ=1B.ρ=cosθC.ρcosθ=1D.$ρ=\frac{1}{cosθ}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.定積分${∫}_{0}^{π}$sin(x+$\frac{π}{3}$)dx=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案