(本小題滿分12分)已知橢圓
短軸
的一個(gè)端點(diǎn)
,離心率
.過
作直線
與橢圓交于另一點(diǎn)
,與
軸交于點(diǎn)
(
不同于原點(diǎn)
),點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
,直線
交
軸于點(diǎn)
.
(Ⅰ)求橢圓的方程;
(Ⅱ)求
的值.
[]
(Ⅰ)由已知,
. 所以橢圓方程為
. ---5分
(Ⅱ)設(shè)直線
方程為
.令
,得
.
由方程組
可得
,即
.
所以
,所以
,
.所以
.
直線
的方程為
.令
,得
.
所以
=
. ---------------- 12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分15分)已知點(diǎn)
P(4,4),圓
C:
與橢圓E:
有一個(gè)公共點(diǎn)
A(3,1),
F1.
F2分別
是橢圓的左.右焦點(diǎn),直線
PF1與圓
C相切.
(1)求
m的值與橢圓
E的方程;
(2)設(shè)
Q為橢圓
E上的一個(gè)動(dòng)點(diǎn),求
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
在直角坐標(biāo)系
中,橢圓
的左、右焦點(diǎn)分別為
. 其中
也是拋物線
的焦點(diǎn),點(diǎn)
為
與
在第一象限的交點(diǎn),且
(Ⅰ)求
的方程;
(Ⅱ)若過點(diǎn)
的直線
與
交于不同的兩點(diǎn)
.
在
之間,試求
與
面積之比的取值范圍.(O為坐標(biāo)原點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓
,
分別為頂點(diǎn),F(xiàn)為焦點(diǎn),過F作
軸的垂線交橢圓于點(diǎn)C,且直線
與直線OC平行.
(1)求橢圓的離心率;
(2)已知定點(diǎn)M(
),
為橢圓上的動(dòng)點(diǎn),若
的重心軌跡經(jīng)過點(diǎn)
,求橢圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
((本題滿分14分)
已知橢圓的兩個(gè)焦點(diǎn)
,且橢圓短軸的兩個(gè)端點(diǎn)與
構(gòu)成正三角形.
(1)求橢圓的方程;
(2)過點(diǎn)(1,0)且與坐標(biāo)軸不平行的直線
與橢圓交于不同兩點(diǎn)P、Q,若在
軸上存在定點(diǎn)E(
,0),使
恒為定值,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分14分)
已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,左右焦點(diǎn)分別為F
1,F(xiàn)
2;且
點(diǎn)
在橢圓C上.
(1)求橢圓C的方程;
(2)過F
1的直線l與橢圓C相交于A、B兩點(diǎn),且△AF
2B的面積為
,求以F
2為圓
心且與直線l相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
((本小題滿分12分)
已知F
1、F
2分別是橢圓
的左、右焦點(diǎn),曲線C是坐標(biāo)原點(diǎn)為頂
點(diǎn),
以F
2為焦點(diǎn)的拋物線,過點(diǎn)F
1的直線
交曲線C于x軸上方兩個(gè)不同點(diǎn)P、Q,點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為M,設(shè)
(I)求
,求直線
的斜率k的取值范圍;
(II)求證:直線MQ過定點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖,正六邊形
的兩個(gè)頂點(diǎn)
、
為橢圓的兩個(gè)
焦點(diǎn),其余4個(gè)頂點(diǎn)在橢圓上,則該橢圓的離心率為_______.
查看答案和解析>>